論文の概要: A New Task: Deriving Semantic Class Targets for the Physical Sciences
- arxiv url: http://arxiv.org/abs/2210.14760v2
- Date: Thu, 27 Oct 2022 09:10:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 14:49:44.585550
- Title: A New Task: Deriving Semantic Class Targets for the Physical Sciences
- Title(参考訳): 新しい課題:物理科学における意味クラス目標の導出
- Authors: Micah Bowles, Hongming Tang, Eleni Vardoulaki, Emma L. Alexander, Yan
Luo, Lawrence Rudnick, Mike Walmsley, Fiona Porter, Anna M. M. Scaife, Inigo
Val Slijepcevic, Gary Segal
- Abstract要約: 我々は、セマンティッククラスターゲットの導出を、新しいマルチモーダルタスクとして定義する。
今後の電波天文学調査における課題に対処し、導出されたセマンティック・ギャラクシー・モルフォロジー・クラス・ターゲットを提示する。
- 参考スコア(独自算出の注目度): 5.078798933882784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We define deriving semantic class targets as a novel multi-modal task. By
doing so, we aim to improve classification schemes in the physical sciences
which can be severely abstracted and obfuscating. We address this task for
upcoming radio astronomy surveys and present the derived semantic radio galaxy
morphology class targets.
- Abstract(参考訳): 意味クラスターゲットの導出を,新しいマルチモーダルタスクとして定義する。
そこで我々は, 物理科学における分類体系の改善を目指しており, 厳密な抽象化と難読化が可能である。
我々は,今後の電波天文学調査において,この課題に対処し,派生した意味的電波銀河形態分類の目標を示す。
関連論文リスト
- SciPrompt: Knowledge-augmented Prompting for Fine-grained Categorization of Scientific Topics [2.3742710594744105]
SciPromptは,低リソーステキスト分類タスクに対して,科学的トピック関連用語を自動的に検索するフレームワークである。
本手法は, ほとんど, ゼロショット設定下での科学的テキスト分類作業において, 最先端, 即時的な微調整法より優れる。
論文 参考訳(メタデータ) (2024-10-02T18:45:04Z) - Foundational Policy Acquisition via Multitask Learning for Motor Skill Generation [0.9668407688201356]
本稿では,新しい運動能力を生み出すための基本方針獲得のためのマルチタスク強化学習アルゴリズムを提案する。
人間の感覚運動適応機構に触発されて,新しい運動技術を学ぶのによく用いられるエンコーダ・デコーダネットワークを訓練することを目指す。
論文 参考訳(メタデータ) (2023-08-31T05:26:14Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - Task-Adaptive Few-shot Node Classification [49.79924004684395]
数ショットの学習環境下でのタスク適応型ノード分類フレームワークを提案する。
具体的には,ラベル付きノードが豊富なクラスにメタ知識を蓄積する。
次に、提案したタスク適応モジュールを介して、ラベル付きノードが限定されたクラスにそのような知識を転送する。
論文 参考訳(メタデータ) (2022-06-23T20:48:27Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
そこで本研究では,メタトレーニングタスクの分散化を目的とした,ドメインに依存しないタスク拡張手法Meta-Interpolationを提案する。
様々な領域にまたがる8つのデータセットに対してメタ補間の有効性を実証的に検証した。
論文 参考訳(メタデータ) (2022-05-20T06:53:03Z) - Self-Taught Cross-Domain Few-Shot Learning with Weakly Supervised Object
Localization and Task-Decomposition [84.24343796075316]
本稿では,クロスドメインなFew-Shot学習のためのタスク拡張分解フレームワークを提案する。
提案した自己学習(ST)アプローチは,タスク指向距離空間を構築することで,非目標誘導の問題を軽減する。
CUB、カーズ、Places、Planae、CropDieases、EuroSAT、ISIC、ChestXの8つのドメインを含むクロスドメイン環境で実験を行う。
論文 参考訳(メタデータ) (2021-09-03T04:23:07Z) - Learning to Map for Active Semantic Goal Navigation [40.193928212509356]
本稿では,エージェントの視野外のセマンティックマップ生成を積極的に学習する新しいフレームワークを提案する。
我々は、エクスプロイトとエクスプロイトのバランスをとることで、異なる目的をどのように定義できるかを示す。
本手法は,Matterport3Dデータセットによって提供される視覚的に現実的な環境において検証される。
論文 参考訳(メタデータ) (2021-06-29T18:01:30Z) - ProtAugment: Unsupervised diverse short-texts paraphrasing for intent
detection meta-learning [4.689945062721168]
本稿では,意図検出のためのメタ学習アルゴリズムであるProtAugmentを提案する。
ProtAugmentはPrototypeal Networksの新たな拡張である。
論文 参考訳(メタデータ) (2021-05-27T08:31:27Z) - Task-Agnostic Morphology Evolution [94.97384298872286]
モルフォロジーと振る舞いを共同適用する現在のアプローチでは、特定のタスクの報酬をモルフォロジー最適化のシグナルとして使用します。
これはしばしば高価なポリシー最適化を必要とし、一般化するために構築されていないタスクに依存した形態をもたらす。
我々は,これらの問題を緩和するための新しいアプローチであるタスク非依存形態進化(tame)を提案する。
論文 参考訳(メタデータ) (2021-02-25T18:59:21Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。