論文の概要: Is Multi-Task Learning an Upper Bound for Continual Learning?
- arxiv url: http://arxiv.org/abs/2210.14797v1
- Date: Wed, 26 Oct 2022 15:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 13:39:33.211602
- Title: Is Multi-Task Learning an Upper Bound for Continual Learning?
- Title(参考訳): マルチタスク学習は継続的学習の上位境界か?
- Authors: Zihao Wu, Huy Tran, Hamed Pirsiavash, Soheil Kolouri
- Abstract要約: 本稿では,特定のデータ拡張のクラスに対して,各タスクが不変表現を学習することに対応する,連続的な自己指導型学習環境を提案する。
連続学習は、MNIST、CIFAR-10、CIFAR-100など、様々なベンチマークデータセットでマルチタスク学習を上回ることが多い。
- 参考スコア(独自算出の注目度): 26.729088618251282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual and multi-task learning are common machine learning approaches to
learning from multiple tasks. The existing works in the literature often assume
multi-task learning as a sensible performance upper bound for various continual
learning algorithms. While this assumption is empirically verified for
different continual learning benchmarks, it is not rigorously justified.
Moreover, it is imaginable that when learning from multiple tasks, a small
subset of these tasks could behave as adversarial tasks reducing the overall
learning performance in a multi-task setting. In contrast, continual learning
approaches can avoid the performance drop caused by such adversarial tasks to
preserve their performance on the rest of the tasks, leading to better
performance than a multi-task learner. This paper proposes a novel continual
self-supervised learning setting, where each task corresponds to learning an
invariant representation for a specific class of data augmentations. In this
setting, we show that continual learning often beats multi-task learning on
various benchmark datasets, including MNIST, CIFAR-10, and CIFAR-100.
- Abstract(参考訳): 連続学習とマルチタスク学習は、複数のタスクから学習するための一般的な機械学習アプローチである。
文学における既存の研究は、多タスク学習を様々な連続学習アルゴリズムの賢明な性能上限として捉えていることが多い。
この仮定は、異なる連続学習ベンチマークで実証的に検証されるが、厳密には正当化されない。
さらに、複数のタスクから学習する場合、これらのタスクの小さなサブセットは、マルチタスク環境での全体的な学習性能を低下させる敵のタスクとして振る舞うことができる。
対照的に、連続的な学習アプローチは、このような敵タスクによるパフォーマンス低下を回避し、タスクの残りの部分でパフォーマンスを維持することができ、マルチタスク学習者よりもパフォーマンスが向上する。
本稿では,各タスクがデータ拡張の特定のクラスに対する不変表現の学習に対応する,新しい連続的自己教師付き学習設定を提案する。
本稿では,MNIST, CIFAR-10, CIFAR-100などのベンチマークデータセットにおいて,連続学習がマルチタスク学習に勝ることを示す。
関連論文リスト
- Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
推定タスクの不確実性の定量化は、オンラインやアクティブな学習など、多くの下流アプリケーションにとって重要な課題である。
タスク間の類似性やタスクの特徴を学習者に提供できない場合、課題設定において新しいマルチタスク信頼区間を提供する。
本稿では,このパラメータを事前に知らないまま,このような改善された後悔を実現する新しいオンライン学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-03T13:08:09Z) - Saliency-Regularized Deep Multi-Task Learning [7.3810864598379755]
マルチタスク学習は、知識を共有するために複数の学習タスクを強制し、一般化能力を改善する。
現代のディープマルチタスク学習は、潜在機能とタスク共有を共同で学習することができるが、それらはタスク関係において不明瞭である。
本稿では,潜在的特徴と明示的な課題関係を共同で学習するマルチタスク学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-03T20:26:44Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
本研究では,Mixture-of-Experts (MoE) がマルチタスク学習を改善するかを検討した。
タスク認識ゲーティング関数を考案し、異なるタスクから専門の専門家にサンプルをルーティングする。
これにより、多数のパラメータを持つ疎活性化マルチタスクモデルが得られるが、高密度モデルの計算コストは同じである。
論文 参考訳(メタデータ) (2022-04-16T00:56:12Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
マルチタスク学習は、パフォーマンスの一般化を改善するために相関タスクを使用する。
タスクは互いに衝突することが多いため、複数のタスクの勾配をどのように組み合わせるべきかを定義するのは難しい。
バックプロパゲーション中の各タスクの重要度を調整する動的バイアスを生成するために,勾配の時間的挙動を考慮した手法を提案する。
論文 参考訳(メタデータ) (2022-04-14T01:52:34Z) - Modular Adaptive Policy Selection for Multi-Task Imitation Learning
through Task Division [60.232542918414985]
マルチタスク学習は、しばしば負の伝達に悩まされ、タスク固有の情報を共有する。
これは、プロトポリケーションをモジュールとして使用して、タスクを共有可能な単純なサブ振る舞いに分割する。
また、タスクを共有サブ行動とタスク固有のサブ行動の両方に自律的に分割する能力を示す。
論文 参考訳(メタデータ) (2022-03-28T15:53:17Z) - On Steering Multi-Annotations per Sample for Multi-Task Learning [79.98259057711044]
マルチタスク学習の研究はコミュニティから大きな注目を集めている。
目覚ましい進歩にもかかわらず、異なるタスクを同時に学習するという課題はまだ検討されていない。
従来の研究は、異なるタスクから勾配を修正しようとするが、これらの手法はタスク間の関係の主観的な仮定を与え、修正された勾配はより正確でないかもしれない。
本稿では,タスク割り当てアプローチによってこの問題に対処する機構であるタスク割当(STA)を紹介し,各サンプルをランダムにタスクのサブセットに割り当てる。
さらなる進展のために、我々は全てのタスクを反復的に割り当てるためにInterleaved Task Allocation(ISTA)を提案する。
論文 参考訳(メタデータ) (2022-03-06T11:57:18Z) - Multi-View representation learning in Multi-Task Scene [4.509968166110557]
我々は,MTMVCSF(Common and Special Features)に基づくマルチタスク多視点学習(multi-Task Multi-View learning)と呼ばれる,新しい半教師付きアルゴリズムを提案する。
AN-MTMVCSFと呼ばれるマルチタスク・マルチタスク・マルチビュー・アルゴリズムが提案されている。
これらのアルゴリズムの有効性は、実世界と合成データの双方でよく設計された実験によって証明される。
論文 参考訳(メタデータ) (2022-01-15T11:26:28Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
マルチタスク学習は、タスク関連性を探究し、個々のタスクを改善することを目的としている。
本稿では,複数のタスクを学習するための一般的な確率的推論フレームワークである変分マルチタスク学習(VMTL)を提案する。
論文 参考訳(メタデータ) (2021-11-09T18:49:45Z) - Towards More Generalizable One-shot Visual Imitation Learning [81.09074706236858]
汎用ロボットは、幅広いタスクを習得し、過去の経験を生かして、新しいタスクを素早く学ぶことができるべきである。
ワンショット模倣学習(OSIL)は、専門家のデモンストレーションでエージェントを訓練することで、この目標にアプローチする。
我々は、より野心的なマルチタスク設定を調査することで、より高度な一般化能力を追求する。
論文 参考訳(メタデータ) (2021-10-26T05:49:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。