Perfectly Secure Steganography Using Minimum Entropy Coupling
- URL: http://arxiv.org/abs/2210.14889v4
- Date: Mon, 30 Oct 2023 04:33:15 GMT
- Title: Perfectly Secure Steganography Using Minimum Entropy Coupling
- Authors: Christian Schroeder de Witt, Samuel Sokota, J. Zico Kolter, Jakob
Foerster, Martin Strohmeier
- Abstract summary: We show that a steganography procedure is perfectly secure under Cachin 1998's information-theoretic model of steganography.
We also show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling.
- Score: 60.154855689780796
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Steganography is the practice of encoding secret information into innocuous
content in such a manner that an adversarial third party would not realize that
there is hidden meaning. While this problem has classically been studied in
security literature, recent advances in generative models have led to a shared
interest among security and machine learning researchers in developing scalable
steganography techniques. In this work, we show that a steganography procedure
is perfectly secure under Cachin (1998)'s information-theoretic model of
steganography if and only if it is induced by a coupling. Furthermore, we show
that, among perfectly secure procedures, a procedure maximizes information
throughput if and only if it is induced by a minimum entropy coupling. These
insights yield what are, to the best of our knowledge, the first steganography
algorithms to achieve perfect security guarantees for arbitrary covertext
distributions. To provide empirical validation, we compare a minimum entropy
coupling-based approach to three modern baselines -- arithmetic coding, Meteor,
and adaptive dynamic grouping -- using GPT-2, WaveRNN, and Image Transformer as
communication channels. We find that the minimum entropy coupling-based
approach achieves superior encoding efficiency, despite its stronger security
constraints. In aggregate, these results suggest that it may be natural to view
information-theoretic steganography through the lens of minimum entropy
coupling.
Related papers
- Byzantine-Robust and Communication-Efficient Distributed Learning via Compressed Momentum Filtering [17.446431849022346]
Distributed learning has become the standard approach for training large-scale machine learning models across private data silos.
It faces critical challenges related to robustness and communication preservation.
We propose a novel Byzantine-robust and communication-efficient distributed learning method.
arXiv Detail & Related papers (2024-09-13T08:53:10Z) - A secure and private ensemble matcher using multi-vault obfuscated templates [1.3518297878940662]
Generative AI has revolutionized modern machine learning by providing unprecedented realism, diversity, and efficiency in data generation.
Biometric template security and secure matching are among the most sought-after features of modern biometric systems.
This paper proposes a novel obfuscation method using Generative AI to enhance biometric template security.
arXiv Detail & Related papers (2024-04-08T05:18:39Z) - Secure Information Embedding in Images with Hybrid Firefly Algorithm [2.9182357325967145]
This research introduces a novel steganographic approach for concealing a confidential portable document format (PDF) document within a host image.
The purpose of this search is to accomplish two main goals: increasing the host image's capacity and reducing distortion.
The findings indicate a decrease in image distortion and an accelerated rate of convergence in the search process.
arXiv Detail & Related papers (2023-12-21T01:50:02Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - FedNew: A Communication-Efficient and Privacy-Preserving Newton-Type
Method for Federated Learning [75.46959684676371]
We introduce a novel framework called FedNew in which there is no need to transmit Hessian information from clients to PS.
FedNew hides the gradient information and results in a privacy-preserving approach compared to the existing state-of-the-art.
arXiv Detail & Related papers (2022-06-17T15:21:39Z) - Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of
Anisotropic MRI [1.281734910003263]
We propose an unsupervised deep learning semantic approach that synthesizes new intermediate slices from encoded low-resolution examples.
The method produces significantly better results in terms of Structural Similarity Index Measure and Peak Signal-to-Noise Ratio than a cubic B-spline approach.
arXiv Detail & Related papers (2022-02-18T15:40:00Z) - Integrating Semantics and Neighborhood Information with Graph-Driven
Generative Models for Document Retrieval [51.823187647843945]
In this paper, we encode the neighborhood information with a graph-induced Gaussian distribution, and propose to integrate the two types of information with a graph-driven generative model.
Under the approximation, we prove that the training objective can be decomposed into terms involving only singleton or pairwise documents, enabling the model to be trained as efficiently as uncorrelated ones.
arXiv Detail & Related papers (2021-05-27T11:29:03Z) - Learning, compression, and leakage: Minimising classification error via
meta-universal compression principles [87.054014983402]
A promising group of compression techniques for learning scenarios is normalised maximum likelihood (NML) coding.
Here we consider a NML-based decision strategy for supervised classification problems, and show that it attains PAC learning when applied to a wide variety of models.
We show that the misclassification rate of our method is upper bounded by the maximal leakage, a recently proposed metric to quantify the potential of data leakage in privacy-sensitive scenarios.
arXiv Detail & Related papers (2020-10-14T20:03:58Z) - Semi-Supervised Learning with Meta-Gradient [123.26748223837802]
We propose a simple yet effective meta-learning algorithm in semi-supervised learning.
We find that the proposed algorithm performs favorably against state-of-the-art methods.
arXiv Detail & Related papers (2020-07-08T08:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.