Environment Design for Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2210.14972v3
- Date: Tue, 14 May 2024 13:36:40 GMT
- Title: Environment Design for Inverse Reinforcement Learning
- Authors: Thomas Kleine Buening, Victor Villin, Christos Dimitrakakis,
- Abstract summary: Current inverse reinforcement learning methods that focus on learning from a single environment can fail to handle slight changes in the environment dynamics.
In our framework, the learner repeatedly interacts with the expert, with the former selecting environments to identify the reward function.
This results in improvements in both sample-efficiency and robustness, as we show experimentally, for both exact and approximate inference.
- Score: 3.085995273374333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning a reward function from demonstrations suffers from low sample-efficiency. Even with abundant data, current inverse reinforcement learning methods that focus on learning from a single environment can fail to handle slight changes in the environment dynamics. We tackle these challenges through adaptive environment design. In our framework, the learner repeatedly interacts with the expert, with the former selecting environments to identify the reward function as quickly as possible from the expert's demonstrations in said environments. This results in improvements in both sample-efficiency and robustness, as we show experimentally, for both exact and approximate inference.
Related papers
- Efficient Diversity-based Experience Replay for Deep Reinforcement Learning [14.96744975805832]
This paper proposes a novel approach, diversity-based experience replay (DBER), which leverages the deterministic point process to prioritize diverse samples in state realizations.
We conducted extensive experiments on Robotic Manipulation tasks in MuJoCo, Atari games, and realistic in-door environments in Habitat.
arXiv Detail & Related papers (2024-10-27T15:51:27Z) - Robust Visual Imitation Learning with Inverse Dynamics Representations [32.806294517277976]
We develop an inverse dynamics state representation learning objective to align the expert environment and the learning environment.
With the abstract state representation, we design an effective reward function, which thoroughly measures the similarity between behavior data and expert data.
Our approach can achieve a near-expert performance in most environments, and significantly outperforms the state-of-the-art visual IL methods and robust IL methods.
arXiv Detail & Related papers (2023-10-22T11:47:35Z) - Diversity Induced Environment Design via Self-Play [9.172096093540357]
We propose a task-agnostic method to identify observed/hidden states that are representative of a given level.
The outcome of this method is then utilized to characterize the diversity between two levels, which as we show can be crucial to effective performance.
In addition, to improve sampling efficiency, we incorporate the self-play technique that allows the environment generator to automatically generate environments that are of great benefit to the training agent.
arXiv Detail & Related papers (2023-02-04T07:31:36Z) - Continual Predictive Learning from Videos [100.27176974654559]
We study a new continual learning problem in the context of video prediction.
We propose the continual predictive learning (CPL) approach, which learns a mixture world model via predictive experience replay.
We construct two new benchmarks based on RoboNet and KTH, in which different tasks correspond to different physical robotic environments or human actions.
arXiv Detail & Related papers (2022-04-12T08:32:26Z) - Perceiving the World: Question-guided Reinforcement Learning for
Text-based Games [64.11746320061965]
This paper introduces world-perceiving modules, which automatically decompose tasks and prune actions by answering questions about the environment.
We then propose a two-phase training framework to decouple language learning from reinforcement learning, which further improves the sample efficiency.
arXiv Detail & Related papers (2022-03-20T04:23:57Z) - Attention Option-Critic [56.50123642237106]
We propose an attention-based extension to the option-critic framework.
We show that this leads to behaviorally diverse options which are also capable of state abstraction.
We also demonstrate the more efficient, interpretable, and reusable nature of the learned options in comparison with option-critic.
arXiv Detail & Related papers (2022-01-07T18:44:28Z) - Sample Efficient Imitation Learning via Reward Function Trained in
Advance [2.66512000865131]
Imitation learning (IL) is a framework that learns to imitate expert behavior from demonstrations.
In this article, we make an effort to improve sample efficiency by introducing a novel scheme of inverse reinforcement learning.
arXiv Detail & Related papers (2021-11-23T08:06:09Z) - Visual Adversarial Imitation Learning using Variational Models [60.69745540036375]
Reward function specification remains a major impediment for learning behaviors through deep reinforcement learning.
Visual demonstrations of desired behaviors often presents an easier and more natural way to teach agents.
We develop a variational model-based adversarial imitation learning algorithm.
arXiv Detail & Related papers (2021-07-16T00:15:18Z) - Demonstration-efficient Inverse Reinforcement Learning in Procedurally
Generated Environments [137.86426963572214]
Inverse Reinforcement Learning can extrapolate reward functions from expert demonstrations.
We show that our approach, DE-AIRL, is demonstration-efficient and still able to extrapolate reward functions which generalize to the fully procedural domain.
arXiv Detail & Related papers (2020-12-04T11:18:02Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.