論文の概要: TASA: Deceiving Question Answering Models by Twin Answer Sentences
Attack
- arxiv url: http://arxiv.org/abs/2210.15221v1
- Date: Thu, 27 Oct 2022 07:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 12:44:39.419955
- Title: TASA: Deceiving Question Answering Models by Twin Answer Sentences
Attack
- Title(参考訳): TASA:ツインアンサー・センテンス攻撃による質問回答モデル廃止
- Authors: Yu Cao, Dianqi Li, Meng Fang, Tianyi Zhou, Jun Gao, Yibing Zhan,
Dacheng Tao
- Abstract要約: 本稿では,質問応答(QA)モデルに対する敵対的攻撃手法であるTASA(Twin Answer Sentences Attack)を提案する。
TASAは、金の回答を維持しながら、流動的で文法的な逆境を生み出す。
- 参考スコア(独自算出の注目度): 93.50174324435321
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Twin Answer Sentences Attack (TASA), an adversarial attack method
for question answering (QA) models that produces fluent and grammatical
adversarial contexts while maintaining gold answers. Despite phenomenal
progress on general adversarial attacks, few works have investigated the
vulnerability and attack specifically for QA models. In this work, we first
explore the biases in the existing models and discover that they mainly rely on
keyword matching between the question and context, and ignore the relevant
contextual relations for answer prediction. Based on two biases above, TASA
attacks the target model in two folds: (1) lowering the model's confidence on
the gold answer with a perturbed answer sentence; (2) misguiding the model
towards a wrong answer with a distracting answer sentence. Equipped with
designed beam search and filtering methods, TASA can generate more effective
attacks than existing textual attack methods while sustaining the quality of
contexts, in extensive experiments on five QA datasets and human evaluations.
- Abstract(参考訳): 質問応答(QA)モデルに対して,ゴールドの回答を維持しつつ,流動的で文法的な相手コンテキストを生成する攻撃手法としてTASA(Twin Answer Sentences Attack)を提案する。
一般敵攻撃の驚くべき進展にもかかわらず、QAモデルに特化した脆弱性と攻撃を調査した研究はほとんどない。
本研究では,まず既存のモデルにおけるバイアスを探索し,質問と文脈のキーワードマッチングに主に依存していることを発見し,関連する文脈関係を無視して回答予測を行う。
上述の2つのバイアスに基づいて、TASAは、(1)ゴールド回答に対するモデルの信頼度を摂動回答文で下げること、(2)間違った回答文でモデルを間違った回答へ誘導すること、の2つの折り返しでターゲットモデルを攻撃する。
設計されたビームサーチとフィルタリング手法により、TASAは5つのQAデータセットと人間の評価に関する広範な実験において、コンテキストの品質を維持しながら、既存のテキストアタック手法よりも効果的なアタックを生成することができる。
関連論文リスト
- Deceiving Question-Answering Models: A Hybrid Word-Level Adversarial Approach [11.817276791266284]
本稿では,QAモデルを騙す新しい単語レベル対逆戦略であるQA-Attackを紹介する。
我々のアテンションベースの攻撃は、特定の単語を識別・ターゲットするために、カスタマイズされたアテンション機構と削除ランキング戦略を利用する。
同義語を慎重に選択し置換し、文法的整合性を保ちながら、間違った反応を生み出すためにモデルを誤解させる。
論文 参考訳(メタデータ) (2024-11-12T23:54:58Z) - Frontier Language Models are not Robust to Adversarial Arithmetic, or
"What do I need to say so you agree 2+2=5? [88.59136033348378]
言語モデルアライメントのための単純なテストベッドを提供する逆算術の問題を考察する。
この問題は自然言語で表される算術的な問題から成り、質問が完了する前に任意の逆文字列を挿入する。
これらの攻撃に対して、強化学習やエージェント構成ループを通じて、モデルを部分的に強化できることが示される。
論文 参考訳(メタデータ) (2023-11-08T19:07:10Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
対話型質問回答モデル(ConvQA)は,会話中に複数回発生した質問文と過去の質問文のペアを用いて質問に回答することを目的としている。
本稿では,会話履歴における不正確な回答を,ConvQAモデルから推定された信頼度と不確実性に基づいてフィルタリングすることを提案する。
我々は2つの標準ConvQAデータセット上で、回答選択に基づくリアルな会話質問回答モデルの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-10T09:42:07Z) - Zero-Query Transfer Attacks on Context-Aware Object Detectors [95.18656036716972]
敵は、ディープニューラルネットワークが誤った分類結果を生成するような摂動画像を攻撃する。
自然の多目的シーンに対する敵対的攻撃を防御するための有望なアプローチは、文脈整合性チェックを課すことである。
本稿では,コンテキスト整合性チェックを回避可能な,コンテキスト整合性攻撃を生成するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-03-29T04:33:06Z) - Reasoning Chain Based Adversarial Attack for Multi-hop Question
Answering [0.0]
以前の敵攻撃は通常、質問文全体を編集する。
マルチホップ推論チェーンに基づく逆攻撃手法を提案する。
その結果,回答と事実予測の双方において,大幅な性能低下が認められた。
論文 参考訳(メタデータ) (2021-12-17T18:03:14Z) - How to Build Robust FAQ Chatbot with Controllable Question Generator? [5.680871239968297]
本稿では, セマンティックグラフを用いて, 高い品質, 多様性, 制御可能なサンプルを生成する手法を提案する。
流動的でセマンティックに生成されたQAペアは、我々の通過検索モデルをうまく騙すことができる。
生成されたデータセットは、新しいターゲット領域へのQAモデルの一般化性を向上させる。
論文 参考訳(メタデータ) (2021-11-18T12:54:07Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
この研究は、特定の攻撃アルゴリズムを知らずにASVの敵防衛を行う最初の試みの一つである。
本研究の目的は,1) 対向摂動浄化と2) 対向摂動検出の2つの視点から対向防御を行うことである。
実験の結果, 検出モジュールは, 約80%の精度で対向検体を検出することにより, ASVを効果的に遮蔽することがわかった。
論文 参考訳(メタデータ) (2021-06-01T07:10:54Z) - A Semantic-based Method for Unsupervised Commonsense Question Answering [40.18557352036813]
ラベル付きタスクデータに依存しないため、教師なしのコモンセンス質問応答は魅力的である。
教師なしコモンセンス質問応答のためのSemantic-based Question Answering法(SEQA)を提案する。
論文 参考訳(メタデータ) (2021-05-31T08:21:52Z) - Explain2Attack: Text Adversarial Attacks via Cross-Domain
Interpretability [18.92690624514601]
研究によると、下流のモデルは、トレーニングデータのような敵対的な入力で簡単に騙されるが、わずかに混乱している。
本稿では,テキスト分類タスクに対するブラックボックス攻撃であるExplain2Attackを提案する。
我々のフレームワークは、最先端モデルのアタックレートを達成または上回る一方、クエリコストの低減と効率の向上を図っている。
論文 参考訳(メタデータ) (2020-10-14T04:56:41Z) - Counterfactual Variable Control for Robust and Interpretable Question
Answering [57.25261576239862]
ディープニューラルネットワークに基づく質問応答(QA)モデルは、多くの場合、堅牢でも説明もできない。
本稿では、因果推論を用いてQAモデルのこのような突発的な「能力」を検証する。
本稿では,任意のショートカット相関を明示的に緩和する,CVC(Counterfactual Variable Control)という新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-12T10:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。