Conversation Disentanglement with Bi-Level Contrastive Learning
- URL: http://arxiv.org/abs/2210.15265v2
- Date: Fri, 30 Aug 2024 18:22:23 GMT
- Title: Conversation Disentanglement with Bi-Level Contrastive Learning
- Authors: Chengyu Huang, Zheng Zhang, Hao Fei, Lizi Liao,
- Abstract summary: Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling.
We propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space.
- Score: 26.707584899718288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, huge amount of human annotated data is required for training, which is expensive to obtain in practice. To address these issues, we propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space. Unlike existing approaches, our disentangle model works in both supervised setting with labeled data and unsupervised setting when no such data is available. The proposed method achieves new state-of-the-art performance on both settings across several public datasets.
Related papers
- Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Cross-Align: Modeling Deep Cross-lingual Interactions for Word Alignment [63.0407314271459]
The proposed Cross-Align achieves the state-of-the-art (SOTA) performance on four out of five language pairs.
Experiments show that the proposed Cross-Align achieves the state-of-the-art (SOTA) performance on four out of five language pairs.
arXiv Detail & Related papers (2022-10-09T02:24:35Z) - Opponent Modeling in Negotiation Dialogues by Related Data Adaptation [20.505272677769355]
We propose a ranker for identifying priorities from negotiation dialogues.
The model takes in a partial dialogue as input and predicts the priority order of the opponent.
We show the utility of our proposed approach through extensive experiments based on two dialogue datasets.
arXiv Detail & Related papers (2022-04-30T21:11:41Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
We propose a new method to extract data with silver labels from raw text to finetune a model for stance classification.
We also propose a 3-stage training framework where the noisy level in the data used for finetuning decreases over different stages.
Our approach ranks 1st among 26 competing teams in the stance classification track of the NLPCC 2021 shared task Argumentative Text Understanding for AI Debater.
arXiv Detail & Related papers (2022-04-27T04:24:35Z) - TANet: Thread-Aware Pretraining for Abstractive Conversational
Summarization [27.185068253347257]
We build a large-scale (11M) pretraining dataset called RCS based on the multi-person discussions in the Reddit community.
We then present TANet, a thread-aware Transformer-based network.
Unlike the existing pre-trained models that treat a conversation as a sequence of sentences, we argue that the inherent contextual dependency plays an essential role in understanding the entire conversation.
arXiv Detail & Related papers (2022-04-09T16:08:46Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Unsupervised Conversation Disentanglement through Co-Training [30.304609312675186]
We explore to train a conversation disentanglement model without referencing any human annotations.
Our method is built upon a deep co-training algorithm, which consists of two neural networks.
For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence.
arXiv Detail & Related papers (2021-09-07T17:05:18Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Cross-lingual Spoken Language Understanding with Regularized
Representation Alignment [71.53159402053392]
We propose a regularization approach to align word-level and sentence-level representations across languages without any external resource.
Experiments on the cross-lingual spoken language understanding task show that our model outperforms current state-of-the-art methods in both few-shot and zero-shot scenarios.
arXiv Detail & Related papers (2020-09-30T08:56:53Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
Job-resume interaction data is sparse and noisy, which affects the performance of job-resume match algorithms.
We propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching.
Our model is able to outperform state-of-the-art methods for job-resume matching.
arXiv Detail & Related papers (2020-09-25T03:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.