Unsupervised Conversation Disentanglement through Co-Training
- URL: http://arxiv.org/abs/2109.03199v1
- Date: Tue, 7 Sep 2021 17:05:18 GMT
- Title: Unsupervised Conversation Disentanglement through Co-Training
- Authors: Hui Liu, Zhan Shi and Xiaodan Zhu
- Abstract summary: We explore to train a conversation disentanglement model without referencing any human annotations.
Our method is built upon a deep co-training algorithm, which consists of two neural networks.
For the message-pair classifier, we enrich its training data by retrieving message pairs with high confidence.
- Score: 30.304609312675186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversation disentanglement aims to separate intermingled messages into
detached sessions, which is a fundamental task in understanding multi-party
conversations. Existing work on conversation disentanglement relies heavily
upon human-annotated datasets, which are expensive to obtain in practice. In
this work, we explore to train a conversation disentanglement model without
referencing any human annotations. Our method is built upon a deep co-training
algorithm, which consists of two neural networks: a message-pair classifier and
a session classifier. The former is responsible for retrieving local relations
between two messages while the latter categorizes a message to a session by
capturing context-aware information. Both networks are initialized respectively
with pseudo data built from an unannotated corpus. During the deep co-training
process, we use the session classifier as a reinforcement learning component to
learn a session assigning policy by maximizing the local rewards given by the
message-pair classifier. For the message-pair classifier, we enrich its
training data by retrieving message pairs with high confidence from the
disentangled sessions predicted by the session classifier. Experimental results
on the large Movie Dialogue Dataset demonstrate that our proposed approach
achieves competitive performance compared to the previous supervised methods.
Further experiments show that the predicted disentangled conversations can
promote the performance on the downstream task of multi-party response
selection.
Related papers
- Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Conversation Disentanglement with Bi-Level Contrastive Learning [26.707584899718288]
Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling.
We propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space.
arXiv Detail & Related papers (2022-10-27T08:41:46Z) - Analysis of Joint Speech-Text Embeddings for Semantic Matching [3.6423306784901235]
We study a joint speech-text embedding space trained for semantic matching by minimizing the distance between paired utterance and transcription inputs.
We extend our method to incorporate automatic speech recognition through both pretraining and multitask scenarios.
arXiv Detail & Related papers (2022-04-04T04:50:32Z) - Towards Generalized Models for Task-oriented Dialogue Modeling on Spoken
Conversations [22.894541507068933]
This paper presents our approach to build generalized models for the Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations Challenge of DSTC-10.
We employ extensive data augmentation strategies on written data, including artificial error injection and round-trip text-speech transformation.
Our approach ranks third on the objective evaluation and second on the final official human evaluation.
arXiv Detail & Related papers (2022-03-08T12:26:57Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
We propose a personalized hybrid matching network (PHMN) for context-response matching.
Our contributions are two-fold: 1) our model extracts personalized wording behaviors from user-specific dialogue history as extra matching information.
We evaluate our model on two large datasets with user identification, i.e., personalized dialogue Corpus Ubuntu (P- Ubuntu) and personalized Weibo dataset (P-Weibo)
arXiv Detail & Related papers (2021-03-17T09:42:11Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
This paper investigates pre-trained language models to find out which model intrinsically carries the most informative representation for task-oriented dialogue tasks.
We fine-tune a feed-forward layer as the classifier probe on top of a fixed pre-trained language model with annotated labels in a supervised way.
arXiv Detail & Related papers (2020-10-26T21:34:39Z) - Response Selection for Multi-Party Conversations with Dynamic Topic
Tracking [63.15158355071206]
We frame response selection as a dynamic topic tracking task to match the topic between the response and relevant conversation context.
We propose a novel multi-task learning framework that supports efficient encoding through large pretrained models.
Experimental results on the DSTC-8 Ubuntu IRC dataset show state-of-the-art results in response selection and topic disentanglement tasks.
arXiv Detail & Related papers (2020-10-15T14:21:38Z) - Exploiting Unsupervised Data for Emotion Recognition in Conversations [76.01690906995286]
Emotion Recognition in Conversations (ERC) aims to predict the emotional state of speakers in conversations.
The available supervised data for the ERC task is limited.
We propose a novel approach to leverage unsupervised conversation data.
arXiv Detail & Related papers (2020-10-02T13:28:47Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.