Explaining the Explainers in Graph Neural Networks: a Comparative Study
- URL: http://arxiv.org/abs/2210.15304v3
- Date: Mon, 1 Jul 2024 10:48:40 GMT
- Title: Explaining the Explainers in Graph Neural Networks: a Comparative Study
- Authors: Antonio Longa, Steve Azzolin, Gabriele Santin, Giulia Cencetti, Pietro LiĆ², Bruno Lepri, Andrea Passerini,
- Abstract summary: Graph Neural Networks (GNNs) have reached a widespread application in many science and engineering fields.
GNN explainers have started to emerge in recent years, with a multitude of methods both novel or adapted from other domains.
- Score: 23.483694828580894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following a fast initial breakthrough in graph based learning, Graph Neural Networks (GNNs) have reached a widespread application in many science and engineering fields, prompting the need for methods to understand their decision process. GNN explainers have started to emerge in recent years, with a multitude of methods both novel or adapted from other domains. To sort out this plethora of alternative approaches, several studies have benchmarked the performance of different explainers in terms of various explainability metrics. However, these earlier works make no attempts at providing insights into why different GNN architectures are more or less explainable, or which explainer should be preferred in a given setting. In this survey, we fill these gaps by devising a systematic experimental study, which tests ten explainers on eight representative architectures trained on six carefully designed graph and node classification datasets. With our results we provide key insights on the choice and applicability of GNN explainers, we isolate key components that make them usable and successful and provide recommendations on how to avoid common interpretation pitfalls. We conclude by highlighting open questions and directions of possible future research.
Related papers
- Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - A Survey on Explainability of Graph Neural Networks [4.612101932762187]
Graph neural networks (GNNs) are powerful graph-based deep-learning models.
This survey aims to provide a comprehensive overview of the existing explainability techniques for GNNs.
arXiv Detail & Related papers (2023-06-02T23:36:49Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - A Survey of Explainable Graph Neural Networks: Taxonomy and Evaluation
Metrics [8.795591344648294]
We focus on explainable graph neural networks and categorize them based on the use of explainable methods.
We provide the common performance metrics for GNNs explanations and point out several future research directions.
arXiv Detail & Related papers (2022-07-26T01:45:54Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Meta-Learning with Graph Neural Networks: Methods and Applications [5.804439462187914]
Graph Neural Networks (GNNs) are generalizations of deep neural networks on graph data.
GNNs are limited when there are few available samples.
In recent years, researchers have started to apply meta-learning to GNNs.
arXiv Detail & Related papers (2021-02-27T06:19:11Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Node Masking: Making Graph Neural Networks Generalize and Scale Better [71.51292866945471]
Graph Neural Networks (GNNs) have received a lot of interest in the recent times.
In this paper, we utilize some theoretical tools to better visualize the operations performed by state of the art spatial GNNs.
We introduce a simple concept, Node Masking, that allows them to generalize and scale better.
arXiv Detail & Related papers (2020-01-17T06:26:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.