論文の概要: Leveraging knowledge graphs to update scientific word embeddings using
latent semantic imputation
- arxiv url: http://arxiv.org/abs/2210.15358v1
- Date: Thu, 27 Oct 2022 12:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 14:03:21.584726
- Title: Leveraging knowledge graphs to update scientific word embeddings using
latent semantic imputation
- Title(参考訳): 潜在意味計算を用いた知識グラフを利用した科学的単語埋め込みの更新
- Authors: Jason Hoelscher-Obermaier, Edward Stevinson, Valentin Stauber, Ivaylo
Zhelev, Victor Botev, Ronin Wu, Jeremy Minton
- Abstract要約: glslsiは、最新の知識グラフからドメイン固有の単語を埋め込むことができることを示す。
生物医学領域における希少項およびOOV項に対して,LSIは信頼性の高い埋め込みベクトルを生成可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most interesting words in scientific texts will often be novel or rare.
This presents a challenge for scientific word embedding models to determine
quality embedding vectors for useful terms that are infrequent or newly
emerging. We demonstrate how \gls{lsi} can address this problem by imputing
embeddings for domain-specific words from up-to-date knowledge graphs while
otherwise preserving the original word embedding model. We use the MeSH
knowledge graph to impute embedding vectors for biomedical terminology without
retraining and evaluate the resulting embedding model on a domain-specific
word-pair similarity task. We show that LSI can produce reliable embedding
vectors for rare and OOV terms in the biomedical domain.
- Abstract(参考訳): 科学文献で最も興味深い言葉は、しばしば珍しいか稀である。
このことは、しばしば、あるいは新しく現れる有用な用語に対する品質埋め込みベクトルを決定するために、科学的単語埋め込みモデルが課題となる。
我々は,従来の単語埋め込みモデルを維持しつつ,最新の知識グラフからドメイン固有語への埋め込みを示唆することにより,この問題にどのように対処できるかを実証する。
我々はMeSHナレッジグラフを用いて,バイオメディカル用語の埋め込みベクターをトレーニングせずに入力し,ドメイン固有の単語対類似性タスクへの埋め込みモデルの評価を行う。
lsiは生体医学領域のレアおよびオーブ項に対して信頼性の高い埋め込みベクターを生成できることを示した。
関連論文リスト
- Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - Automatic Biomedical Term Clustering by Learning Fine-grained Term
Representations [0.8154691566915505]
最先端の用語埋め込みは、事前訓練された言語モデルを利用して用語をエンコードし、知識グラフからの同義語と関係知識を使用して、対照的な学習を導く。
これらの埋め込みは、バイオメディカルな用語クラスタリングの失敗につながる小さなテキストの違いに敏感ではない。
この問題を軽減するため,動的ハード・ポジティと負のサンプルを提供することにより,プレトレーニング項埋め込みにおけるサンプリング戦略を調整した。
我々は提案手法をCODER++と命名し,新たにリリースされたBIOSというバイオメディカル知識グラフのバイオメディカル概念のクラスタリングに適用した。
論文 参考訳(メタデータ) (2022-04-01T12:30:58Z) - Taxonomy Enrichment with Text and Graph Vector Representations [61.814256012166794]
我々は,既存の分類学に新たな語を加えることを目的とした分類学の豊かさの問題に対処する。
我々は,この課題に対して,少ない労力で高い結果を得られる新しい手法を提案する。
我々は、異なるデータセットにわたる最先端の結果を達成し、ミスの詳細なエラー分析を提供する。
論文 参考訳(メタデータ) (2022-01-21T09:01:12Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
短文分類のためのグラフニューラルネットワーク(GNN)に基づく ShiNE と呼ばれる新しい手法を提案する。
まず,短文データセットを単語レベル成分グラフからなる階層的不均一グラフとしてモデル化する。
そして、類似した短いテキスト間の効果的なラベル伝搬を容易にするショート文書グラフを動的に学習する。
論文 参考訳(メタデータ) (2021-10-30T05:33:05Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization
for Relation Extraction [111.74812895391672]
シナジスティック最適化(KnowPrompt)を用いた知識認識型Promptチューニング手法を提案する。
関係ラベルに含まれる潜在知識をインジェクトして,学習可能な仮想型語と解答語で構築する。
論文 参考訳(メタデータ) (2021-04-15T17:57:43Z) - Knowledge-Base Enriched Word Embeddings for Biomedical Domain [5.086571902225929]
利用可能なコーポラとドメイン知識の情報を共同利用したバイオメディカルドメインのための新しい単語埋め込みモデルを提案する。
既存のアプローチとは異なり、提案手法は単純だが、ドメインリソースで利用可能な正確な知識を正しく捉えることに長けている。
論文 参考訳(メタデータ) (2021-02-20T18:18:51Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Benchmark and Best Practices for Biomedical Knowledge Graph Embeddings [8.835844347471626]
SNOMED-CT知識グラフ上に,いくつかの最先端知識グラフ埋め込みモデルを学習する。
本稿では,バイオメディカル知識表現の学習に知識グラフのマルチリレーショナルな性質を活用することの重要性を論じる。
論文 参考訳(メタデータ) (2020-06-24T14:47:33Z) - Evaluating Sparse Interpretable Word Embeddings for Biomedical Domain [1.3526604206343171]
解釈可能性(英: Interpretability)は、生体医学的応用において不可欠な部分である正当化の鍵となる手段である。
医療領域における単語埋め込みの解釈可能性に関する包括的研究を行い,スパース法の役割に着目した。
実験結果から, 下流タスクにおける元のベクトルの性能を保ちながら, 疎単語ベクトルの方がはるかに解釈可能性が高いことがわかった。
論文 参考訳(メタデータ) (2020-05-11T13:56:58Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
ニューラルネットワークを用いた分散項表現(あるいは項埋め込み)学習による分布意味モデリングのための新しい手法を設計する。
Vec2graphは、動的かつインタラクティブなグラフとして単語埋め込み(私たちの場合の長期埋め込み)を視覚化するためのPythonライブラリである。
論文 参考訳(メタデータ) (2020-03-06T18:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。