論文の概要: Meta-Learning Initializations for Interactive Medical Image Registration
- arxiv url: http://arxiv.org/abs/2210.15371v1
- Date: Thu, 27 Oct 2022 12:30:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 13:45:53.275851
- Title: Meta-Learning Initializations for Interactive Medical Image Registration
- Title(参考訳): インタラクティブな医用画像登録のためのメタラーニング初期化
- Authors: Zachary M.C. Baum, Yipeng Hu, Dean Barratt
- Abstract要約: 本稿では,臨床応用のための登録,インタラクション,メタラーニングプロトコルを実装した特定のアルゴリズムについて述べる。
少量のサンプルデータを非インタラクティブな方法に適用すると、より高い登録誤差(6.26mm)が得られ、対話型MR-TRUS登録の有効性を示す。
- 参考スコア(独自算出の注目度): 0.18750851274087482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a meta-learning framework for interactive medical image
registration. Our proposed framework comprises three components: a
learning-based medical image registration algorithm, a form of user interaction
that refines registration at inference, and a meta-learning protocol that
learns a rapidly adaptable network initialization. This paper describes a
specific algorithm that implements the registration, interaction and
meta-learning protocol for our exemplar clinical application: registration of
magnetic resonance (MR) imaging to interactively acquired, sparsely-sampled
transrectal ultrasound (TRUS) images. Our approach obtains comparable
registration error (4.26 mm) to the best-performing non-interactive
learning-based 3D-to-3D method (3.97 mm) while requiring only a fraction of the
data, and occurring in real-time during acquisition. Applying sparsely sampled
data to non-interactive methods yields higher registration errors (6.26 mm),
demonstrating the effectiveness of interactive MR-TRUS registration, which may
be applied intraoperatively given the real-time nature of the adaptation
process.
- Abstract(参考訳): インタラクティブな医用画像登録のためのメタラーニングフレームワークを提案する。
提案フレームワークは,学習に基づく医用画像登録アルゴリズム,推論時の登録を洗練するユーザインタラクションの形式,適応性の高いネットワーク初期化を学習するメタラーニングプロトコルの3つのコンポーネントから構成される。
本稿では,mr画像の対話的取得,スパースサンプリングした経直腸超音波(trus)画像へのレジストレーション,相互作用,メタラーニングプロトコルを実装したアルゴリズムについて述べる。
提案手法は,データの一部しか必要とせず,取得時にリアルタイムに発生する,最も優れた非対話型学習ベース3D-to-3D法(3.97 mm)と同等の登録誤差(4.26 mm)を得る。
少量のサンプルデータを非インタラクティブな方法に適用すると、より高い登録誤差(6.26mm)が得られ、インタラクティブMR-TRUS登録の有効性が証明される。
関連論文リスト
- SAMReg: SAM-enabled Image Registration with ROI-based Correspondence [12.163299991979574]
本稿では,医療用画像登録のための対の関心領域(ROI)に基づく新しい空間対応表現について述べる。
我々は,トレーニング(あるいはトレーニングデータ)や勾配に基づく微調整,即時的なエンジニアリングを必要としない新しい登録アルゴリズムSAMRegを開発した。
提案手法は,試験指標間でのインテンシティベース反復アルゴリズムとDDF予測学習ベースネットワークより優れている。
論文 参考訳(メタデータ) (2024-10-17T23:23:48Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - Recurrent Inference Machine for Medical Image Registration [11.351457718409788]
本稿では,リカレント推論画像登録(RIIR)ネットワークと呼ばれる新しい画像登録手法を提案する。
RIIRは、メタラーニングによる登録問題の解法として反復的に定式化される。
実験の結果、RIIRはトレーニングデータの5%しか持たない深層学習法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-19T10:06:35Z) - Joint segmentation and discontinuity-preserving deformable registration:
Application to cardiac cine-MR images [74.99415008543276]
多くの深層学習に基づく登録法は、変形場は画像領域の至る所で滑らかで連続的であると仮定する。
本研究では,この課題に対処するために,不連続かつ局所的に滑らかな変形場を確保するための新しい不連続保存画像登録手法を提案する。
入力画像の構造的相関を学習するために,ネットワークのセグメンテーション成分にコアテンションブロックを提案する。
大規模心磁気共鳴画像系列を用いた物体内時間画像登録の課題について検討した。
論文 参考訳(メタデータ) (2022-11-24T23:45:01Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Automated Learning for Deformable Medical Image Registration by Jointly
Optimizing Network Architectures and Objective Functions [69.6849409155959]
本稿では、アーキテクチャとそれに対応する学習目標の両方を協調的に最適化する自動学習登録アルゴリズム(AutoReg)を提案する。
マルチサイトボリュームデータセットと各種登録タスクについて,画像登録実験を行った。
我々のAutoRegは、与えられたボリュームに対して最適な深層登録ネットワークを自動的に学習し、最先端の性能を達成することができる。
論文 参考訳(メタデータ) (2022-03-14T01:54:38Z) - Unsupervised Image Registration Towards Enhancing Performance and
Explainability in Cardiac And Brain Image Analysis [3.5718941645696485]
モダリティ内およびモダリティ内アフィンおよび非リグイド画像登録は、臨床画像診断において必須の医用画像解析プロセスである。
本稿では、アフィンおよび非剛性変換を正確にモデル化できる教師なしディープラーニング登録手法を提案する。
本手法は,モーダリティ不変の潜在反感を学習するために,双方向のモーダリティ画像合成を行う。
論文 参考訳(メタデータ) (2022-03-07T12:54:33Z) - SAME: Deformable Image Registration based on Self-supervised Anatomical
Embeddings [16.38383865408585]
この研究は、ピクセルレベルでの2つの画像間の密度の高い解剖学的/意味的対応を計算できる最近のアルゴリズムSAMに基づいて構築されている。
本手法は, 画像登録をアフィン変換, 粗変形, 深部変形可能な3段階に分割する。
論文 参考訳(メタデータ) (2021-09-23T18:03:11Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - JSSR: A Joint Synthesis, Segmentation, and Registration System for 3D
Multi-Modal Image Alignment of Large-scale Pathological CT Scans [27.180136688977512]
本稿では,エンドツーエンドの3D畳み込みニューラルネットワークに基づく新しいマルチタスク学習システムJSSRを提案する。
システムは、教師なしの方法で異なるタスク間の暗黙の制約を満たすように最適化されている。
従来型のマルチモーダル登録法よりも一貫して優れています。
論文 参考訳(メタデータ) (2020-05-25T16:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。