論文の概要: One-Class Risk Estimation for One-Class Hyperspectral Image
Classification
- arxiv url: http://arxiv.org/abs/2210.15457v2
- Date: Fri, 25 Aug 2023 11:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 18:13:42.371973
- Title: One-Class Risk Estimation for One-Class Hyperspectral Image
Classification
- Title(参考訳): 一級ハイパースペクトル画像分類における一級リスク推定
- Authors: Hengwei Zhao, Yanfei Zhong, Xinyu Wang, Hong Shu
- Abstract要約: ハイパースペクトル画像(HSI)の1クラス分類は、HSIから単一のターゲットクラスを特定することを目的としている。
深層学習に基づく手法は,HSIマルチクラス化における分散重複を克服するために現在主流である。
本稿では、弱い教師付き深いHSI一級分類であるHOneClsを提案する。
- 参考スコア(独自算出の注目度): 8.206701378422968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral imagery (HSI) one-class classification is aimed at identifying
a single target class from the HSI by using only knowing positive data, which
can significantly reduce the requirements for annotation. However, when
one-class classification meets HSI, it is difficult for classifiers to find a
balance between the overfitting and underfitting of positive data due to the
problems of distribution overlap and distribution imbalance. Although deep
learning-based methods are currently the mainstream to overcome distribution
overlap in HSI multiclassification, few studies focus on deep learning-based
HSI one-class classification. In this article, a weakly supervised deep HSI
one-class classifier, namely, HOneCls, is proposed, where a risk estimator,the
one-class risk estimator, is particularly introduced to make the fully
convolutional neural network (FCN) with the ability of one class classification
in the case of distribution imbalance. Extensive experiments (20 tasks in
total) were conducted to demonstrate the superiority of the proposed
classifier.
- Abstract(参考訳): ハイパースペクトル画像(HSI)の1クラス分類は、肯定的なデータのみを知ることによって、HSIから単一のターゲットクラスを識別することを目的としており、アノテーションの要求を大幅に低減することができる。
しかし,一類分類がhsiを満たした場合,分布重複や分布不均衡の問題から,正のデータのオーバーフィッティングと過フィッティングのバランスを見出すことは困難である。
深層学習に基づく手法は現在,hsiマルチクラス化における分布重複を克服する主流となっているが,深層学習に基づくhsi one-class分類に注目した研究は少ない。
本稿では, リスク推定器である1クラスのリスク推定器であるHOneClsを, 分布不均衡の場合の1クラスの分類能力を備えた完全畳み込みニューラルネットワーク(FCN)を実現するために, 弱教師付き深部HSIワンクラス分類器を提案する。
提案する分類器の優越性を示すために,広範な実験(合計20課題)を行った。
関連論文リスト
- Selective Classification Under Distribution Shifts [2.6541808384534478]
選別分類において、分類器は過度なエラーを避けるために誤りとなる可能性のある予測を棄却する。
本稿では,分散シフトを考慮したSCフレームワークを提案する。
提案したスコア関数は、一般化されたSCのための既存のスコア関数よりも効果的で信頼性が高いことを示す。
論文 参考訳(メタデータ) (2024-05-08T15:52:50Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
本稿では,任意の損失に対する分類リスクを非バイアスで推定するCFAOの普遍的手法を提案する。
提案手法は,非バイアスリスク推定器によるリスクの整合性を保証するだけでなく,任意の損失に対応できる。
論文 参考訳(メタデータ) (2023-06-20T07:22:01Z) - Hyperspectral Image Analysis with Subspace Learning-based One-Class
Classification [18.786429304405097]
ハイパースペクトル画像(HSI)分類は、環境モニタリング、医療画像、土地利用/土地被覆(LULC)分類など、多くの応用において重要な課題である。
本研究では,最近提案した1クラス分類(OCC)における部分空間学習手法について検討する。
このようにして、提案する分類フレームワークでは、個別の次元削減や特徴選択の手順は不要である。
LULC分類問題とリッチスペクトル情報(高次元)の不均衡ラベルを考えると,提案手法はHSIデータに適している。
論文 参考訳(メタデータ) (2023-04-19T15:17:05Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Binary Classification from Multiple Unlabeled Datasets via Surrogate Set
Classification [94.55805516167369]
我々は m 個の U 集合を $mge2$ で二進分類する新しい手法を提案する。
我々のキーとなる考え方は、サロゲート集合分類(SSC)と呼ばれる補助的分類タスクを考えることである。
論文 参考訳(メタデータ) (2021-02-01T07:36:38Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
一般化ゼロショット学習(GZSL)の目的は、目に見えないクラスと見えないクラスの両方を認識することである。
ほとんどのGZSLメソッドは、通常、見えないクラスの意味情報から視覚表現を合成することを学ぶ。
本論文では,三重項損失を持つ2重変分オートエンコーダを利用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-09T05:21:27Z) - Beyond cross-entropy: learning highly separable feature distributions
for robust and accurate classification [22.806324361016863]
本稿では, 対角的ロバスト性を提供する, ディープロバストなマルチクラス分類器を訓練するための新しい手法を提案する。
提案手法に基づく潜在空間の正則化は,優れた分類精度が得られることを示す。
論文 参考訳(メタデータ) (2020-10-29T11:15:17Z) - Population structure-learned classifier for high-dimension
low-sample-size class-imbalanced problem [3.411873646414169]
集団構造学習型分類器(PSC)を提案する。
PSCは、IHDLSS上でのより優れた一般化性能を得ることができる。
PSCはIHDLSSの最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-10T08:33:39Z) - Fuzziness-based Spatial-Spectral Class Discriminant Information
Preserving Active Learning for Hyperspectral Image Classification [0.456877715768796]
本研究では,局所的・グローバルな識別情報保存手法の内外におけるファジィに基づく空間スペクトルを提案する。
ベンチマークHSIデータセットによる実験結果から,FLG法が生成,極端学習機械,スパース多相ロジスティック回帰に与える影響が示された。
論文 参考訳(メタデータ) (2020-05-28T18:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。