Digital Quantum Simulation of the Spin-Boson Model under Open System
Dynamics
- URL: http://arxiv.org/abs/2210.15922v2
- Date: Wed, 30 Nov 2022 02:14:03 GMT
- Title: Digital Quantum Simulation of the Spin-Boson Model under Open System
Dynamics
- Authors: Andreas Burger and Leong Chuan Kwek and Dario Poletti
- Abstract summary: We study how to simulate open quantum dynamics in a digital quantum computer.
We show that the key aspect is to simulate the unitary portion of the dynamics, while the dissipative part can lead to a more noise-resistant simulation.
- Score: 1.5727276506140881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital quantum computers have the potential to simulate complex quantum
systems. The spin-boson model is one of such systems, used in disparate
physical domains. Importantly, in a number of setups, the spin-boson model is
open, i.e. the system is in contact with an external environment which can, for
instance, cause the decay of the spin state. Here we study how to simulate such
open quantum dynamics in a digital quantum computer, for which we use one of
IBM's hardware. We consider in particular how accurate different
implementations of the evolution result as a function of the level of noise in
the hardware and of the parameters of the open dynamics. For the regimes
studied, we show that the key aspect is to simulate the unitary portion of the
dynamics, while the dissipative part can lead to a more noise-resistant
simulation. We consider both a single spin coupled to a harmonic oscillator,
and also two spins coupled to the oscillator. In the latter case, we show that
it is possible to simulate the emergence of correlations between the spins via
the oscillator.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Simulating open quantum systems with giant atoms [0.0]
We introduce a simulator for open quantum many-body systems based on giant atoms, i.e., atoms (possibly artificial)
We first show that a simulator consisting of two giant atoms can simulate the dynamics of two coupled qubits.
We demonstrate and analyze the robustness of these simulation results against noise affecting the giant atoms.
arXiv Detail & Related papers (2024-06-19T16:31:42Z) - Synthetic high angular momentum spin dynamics in a microwave oscillator [1.32883757526406]
We show how to modify a harmonic oscillator on-demand to implement a continuous range of generators associated to resonant driving of a harmonic qudit.
For the first time, we use linear, harmonic operations to accomplish four logical gates on a harmonic qudit encoding.
Our results show how motion on a closed Hilbert space can be useful for quantum information processing.
arXiv Detail & Related papers (2024-05-24T16:37:43Z) - Quantum Simulation of Spin-Boson Models with Structured Bath [1.7148514211041472]
Trapped ions present a natural platform for simulating the quantum dynamics of open quantum systems.
We demonstrate the capability for adjusting the bath's temperature and continuous spectral density by adding randomness to fully programmable control parameters.
The experimental outcomes closely align with theoretical predictions, indicating successful simulation of open quantum systems using a trapped-ion system.
arXiv Detail & Related papers (2024-05-23T14:32:04Z) - Squeezing oscillations in a multimode bosonic Josephson junction [0.4335300149154109]
We show how to enhance the quantum correlations in a one-dimensional multimode bosonic Josephson junction.
Our work provides new ways for engineering correlations and entanglement in the external degree of freedom of interacting many-body systems.
arXiv Detail & Related papers (2023-04-05T23:29:05Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Simulating spin dynamics with quantum computers [0.0]
IBM quantum computers are used to simulate the dynamics of small systems of interacting quantum spins.
We compute the exact time evolution at arbitrary times and measure spin expectation values and energy.
arXiv Detail & Related papers (2022-06-29T16:46:04Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.