論文の概要: DORE: Document Ordered Relation Extraction based on Generative Framework
- arxiv url: http://arxiv.org/abs/2210.16064v1
- Date: Fri, 28 Oct 2022 11:18:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 16:06:46.530960
- Title: DORE: Document Ordered Relation Extraction based on Generative Framework
- Title(参考訳): DORE:生成フレームワークに基づく文書順序付き関係抽出
- Authors: Qipeng Guo, Yuqing Yang, Hang Yan, Xipeng Qiu, Zheng Zhang
- Abstract要約: 本稿では,既存のDocREモデルの根本原因について検討する。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
4つのデータセットに対する実験結果から,提案手法は生成型DocREモデルの性能を向上させることができることが示された。
- 参考スコア(独自算出の注目度): 56.537386636819626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, there is a surge of generation-based information extraction
work, which allows a more direct use of pre-trained language models and
efficiently captures output dependencies. However, previous generative methods
using lexical representation do not naturally fit document-level relation
extraction (DocRE) where there are multiple entities and relational facts. In
this paper, we investigate the root cause of the underwhelming performance of
the existing generative DocRE models and discover that the culprit is the
inadequacy of the training paradigm, instead of the capacities of the models.
We propose to generate a symbolic and ordered sequence from the relation matrix
which is deterministic and easier for model to learn. Moreover, we design a
parallel row generation method to process overlong target sequences. Besides,
we introduce several negative sampling strategies to improve the performance
with balanced signals. Experimental results on four datasets show that our
proposed method can improve the performance of the generative DocRE models. We
have released our code at https://github.com/ayyyq/DORE.
- Abstract(参考訳): 近年,事前学習した言語モデルをより直接的に利用し,効率よく出力依存を把握できる世代ベースの情報抽出作業が急増している。
しかし,従来の語彙表現を用いた生成手法は,複数の実体や関係事実が存在する文書レベルの関係抽出(DocRE)に自然に適合しない。
本稿では,既存の生成ドクレモデルの性能低下の根本原因について検討し,モデルの能力に代えて,学習パラダイムの不十分性が原因であることを明らかにした。
本稿では,モデルが学習しやすく,決定論的な関係行列から記号列と順序列を生成することを提案する。
さらに,オーバーロングターゲットシーケンスを処理する並列行生成手法も設計する。
また,バランスの取れた信号の性能を向上させるために,いくつかの負のサンプリング戦略を導入する。
4つのデータセットにおける実験結果から,提案手法が生成型docreモデルの性能を向上できることが判明した。
コードをhttps://github.com/ayyyq/DOREでリリースしました。
関連論文リスト
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - How to Unleash the Power of Large Language Models for Few-shot Relation
Extraction? [28.413620806193165]
本稿では,GPT-3.5による数ショット関係抽出のための主要な手法,文脈内学習とデータ生成について検討する。
テキスト内学習は,従来の素早い学習手法と同等のパフォーマンスを達成でき,大規模言語モデルによるデータ生成は,従来のソリューションを推し進めて,最先端の複数ショットの新たな結果が得られることを観察する。
論文 参考訳(メタデータ) (2023-05-02T15:55:41Z) - Towards Better Dynamic Graph Learning: New Architecture and Unified
Library [29.625205125350313]
DyGFormerは、動的グラフ学習のためのTransformerベースのアーキテクチャである。
DyGLibは、標準のトレーニングパイプラインとコーディングインターフェースを備えた統一ライブラリである。
論文 参考訳(メタデータ) (2023-03-23T05:27:32Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
既存のコード・トゥ・テキスト生成モデルは、コードの高レベルな要約のみを生成する。
我々は、コードのための高品質な説明記述の基準を特定するために、人間の研究を行う。
タスクのための多段階微調整戦略とベースラインモデルを提案する。
論文 参考訳(メタデータ) (2022-11-25T18:05:44Z) - A sequence-to-sequence approach for document-level relation extraction [4.906513405712846]
文書レベルの関係抽出(DocRE)は、文内および文間の情報の統合を必要とする。
Seq2relはDocREのエンドツーエンドのサブタスクを学習し、タスク固有のコンポーネントのパイプラインを置き換える。
論文 参考訳(メタデータ) (2022-04-03T16:03:19Z) - Improving Non-autoregressive Generation with Mixup Training [51.61038444990301]
本稿では,事前学習したトランスモデルに基づく非自己回帰生成モデルを提案する。
我々はMIxソースと擬似ターゲットという,シンプルで効果的な反復訓練手法を提案する。
質問生成,要約,パラフレーズ生成を含む3つの世代ベンチマーク実験により,提案手法が新たな最先端結果を実現することを示す。
論文 参考訳(メタデータ) (2021-10-21T13:04:21Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。