Preferential Subsampling for Stochastic Gradient Langevin Dynamics
- URL: http://arxiv.org/abs/2210.16189v3
- Date: Sat, 8 Jul 2023 18:23:10 GMT
- Title: Preferential Subsampling for Stochastic Gradient Langevin Dynamics
- Authors: Srshti Putcha, Christopher Nemeth, Paul Fearnhead
- Abstract summary: gradient MCMC offers an unbiased estimate of the gradient of the log-posterior with a small, uniformly-weighted subsample of the data.
The resulting gradient estimator may exhibit a high variance and impact sampler performance.
We demonstrate that such an approach can maintain the same level of accuracy while substantially reducing the average subsample size that is used.
- Score: 3.158346511479111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic gradient MCMC (SGMCMC) offers a scalable alternative to
traditional MCMC, by constructing an unbiased estimate of the gradient of the
log-posterior with a small, uniformly-weighted subsample of the data. While
efficient to compute, the resulting gradient estimator may exhibit a high
variance and impact sampler performance. The problem of variance control has
been traditionally addressed by constructing a better stochastic gradient
estimator, often using control variates. We propose to use a discrete,
non-uniform probability distribution to preferentially subsample data points
that have a greater impact on the stochastic gradient. In addition, we present
a method of adaptively adjusting the subsample size at each iteration of the
algorithm, so that we increase the subsample size in areas of the sample space
where the gradient is harder to estimate. We demonstrate that such an approach
can maintain the same level of accuracy while substantially reducing the
average subsample size that is used.
Related papers
- Adaptive Perturbation-Based Gradient Estimation for Discrete Latent
Variable Models [28.011868604717726]
We present Adaptive IMLE, the first adaptive gradient estimator for complex discrete distributions.
We show that our estimator can produce faithful estimates while requiring orders of magnitude fewer samples than other gradient estimators.
arXiv Detail & Related papers (2022-09-11T13:32:39Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
We introduce data structures for solving robust regression through gradient descent (SGD)
Our algorithm effectively runs $T$ steps of SGD with importance sampling while using sublinear space and just making a single pass over the data.
arXiv Detail & Related papers (2022-07-16T03:09:30Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
We present an adaptive Hessian approximated gradient MCMC method to incorporate local geometric information while sampling from the posterior.
We adopt a magnitude-based weight pruning method to enforce the sparsity of the network.
arXiv Detail & Related papers (2020-10-03T16:22:15Z) - A Study of Gradient Variance in Deep Learning [56.437755740715396]
We introduce a method, Gradient Clustering, to minimize the variance of average mini-batch gradient with stratified sampling.
We measure the gradient variance on common deep learning benchmarks and observe that, contrary to common assumptions, gradient variance increases during training.
arXiv Detail & Related papers (2020-07-09T03:23:10Z) - Carath\'eodory Sampling for Stochastic Gradient Descent [79.55586575988292]
We present an approach that is inspired by classical results of Tchakaloff and Carath'eodory about measure reduction.
We adaptively select the descent steps where the measure reduction is carried out.
We combine this with Block Coordinate Descent so that measure reduction can be done very cheaply.
arXiv Detail & Related papers (2020-06-02T17:52:59Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
We introduce an unbiased estimator of the log marginal likelihood and its gradients for latent variable models based on randomized truncation of infinite series.
We show that models trained using our estimator give better test-set likelihoods than a standard importance-sampling based approach for the same average computational cost.
arXiv Detail & Related papers (2020-04-01T11:49:30Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
We propose a non-uniform subsampling scheme to improve the sampling accuracy.
EWSG is designed so that a non-uniform gradient-MCMC method mimics the statistical behavior of a batch-gradient-MCMC method.
In our practical implementation of EWSG, the non-uniform subsampling is performed efficiently via a Metropolis-Hastings chain on the data index.
arXiv Detail & Related papers (2020-02-20T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.