論文の概要: Local Model Reconstruction Attacks in Federated Learning and their Uses
- arxiv url: http://arxiv.org/abs/2210.16205v3
- Date: Mon, 27 May 2024 13:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:57:42.262629
- Title: Local Model Reconstruction Attacks in Federated Learning and their Uses
- Title(参考訳): フェデレーション学習における局所モデル再構築攻撃とその利用
- Authors: Ilias Driouich, Chuan Xu, Giovanni Neglia, Frederic Giroire, Eoin Thomas,
- Abstract要約: 局所的なモデル再構築攻撃は、敵が他の古典的な攻撃をより効果的に引き起こすことを可能にする。
局所モデル再構成攻撃を利用したフェデレート学習におけるモデルベース属性推論攻撃を提案する。
我々の研究は、FLのプライバシーリスクを効果的に定量化するために、強力で説明可能な攻撃を設計するための新しい角度を提供する。
- 参考スコア(独自算出の注目度): 9.14750410129878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we initiate the study of local model reconstruction attacks for federated learning, where a honest-but-curious adversary eavesdrops the messages exchanged between a targeted client and the server, and then reconstructs the local/personalized model of the victim. The local model reconstruction attack allows the adversary to trigger other classical attacks in a more effective way, since the local model only depends on the client's data and can leak more private information than the global model learned by the server. Additionally, we propose a novel model-based attribute inference attack in federated learning leveraging the local model reconstruction attack. We provide an analytical lower-bound for this attribute inference attack. Empirical results using real world datasets confirm that our local reconstruction attack works well for both regression and classification tasks. Moreover, we benchmark our novel attribute inference attack against the state-of-the-art attacks in federated learning. Our attack results in higher reconstruction accuracy especially when the clients' datasets are heterogeneous. Our work provides a new angle for designing powerful and explainable attacks to effectively quantify the privacy risk in FL.
- Abstract(参考訳): そこで,本研究では,対象のクライアントとサーバ間で交わされたメッセージを,真に反逆的な相手が盗聴し,被害者の局所的・個人的モデルを再構築する,フェデレーション学習のための局所モデル再構築攻撃について検討する。
ローカルモデル再構築攻撃は、ローカルモデルがクライアントのデータにのみ依存し、サーバが学習したグローバルモデルよりも多くのプライベート情報をリークできるため、敵が他の古典的攻撃をより効果的にトリガーすることを可能にする。
さらに,局所モデル再構成攻撃を利用したフェデレーション学習におけるモデルに基づく属性推論攻撃を提案する。
この属性推論攻撃の解析的低バウンドを提供する。
実世界のデータセットを用いた実証実験の結果、我々の局所的再構築攻撃は回帰と分類の両方に有効であることを確認した。
さらに,フェデレート学習における最先端攻撃に対する新たな属性推論攻撃のベンチマークを行った。
我々の攻撃は、特にクライアントのデータセットが不均一である場合に、高い再構成精度をもたらす。
我々の研究は、FLのプライバシーリスクを効果的に定量化するために、強力で説明可能な攻撃を設計するための新しい角度を提供する。
関連論文リスト
- A Stealthy Wrongdoer: Feature-Oriented Reconstruction Attack against Split Learning [14.110303634976272]
Split Learning(SL)は、プライバシ保護機能と最小限の計算要件で有名な分散学習フレームワークである。
以前の研究は、トレーニングデータを再構築するサーバ敵によるSLシステムの潜在的なプライバシー侵害について、一貫して強調している。
本稿では,特徴指向再構築攻撃 (FORA) という,SL上での半正直なデータ再構成攻撃について紹介する。
論文 参考訳(メタデータ) (2024-05-07T08:38:35Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
ブラックボックス設定において、より高い攻撃精度を達成できる学習ベースモデル反転攻撃のための新しい訓練パラダイムを提案する。
まず,攻撃モデルの学習過程を,意味的損失関数を追加して規則化する。
第2に、学習データに逆例を注入し、クラス関連部の多様性を高める。
論文 参考訳(メタデータ) (2023-06-24T13:40:58Z) - Deconstructing Classifiers: Towards A Data Reconstruction Attack Against
Text Classification Models [2.9735729003555345]
我々はMix And Match攻撃と呼ばれる新たなターゲットデータ再構成攻撃を提案する。
この研究は、分類モデルにおけるデータ再構成攻撃に関連するプライバシーリスクを考慮することの重要性を強調している。
論文 参考訳(メタデータ) (2023-06-23T21:25:38Z) - A New Implementation of Federated Learning for Privacy and Security
Enhancement [27.612480082254486]
フェデレーテッド・ラーニング(FL)は、新しい機械学習・セッティングとして登場した。
ローカルデータを共有する必要はなく、プライバシを十分に保護することができる。
本稿では,ビザンチン攻撃に対するモデル更新に基づくフェデレーション平均化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-03T03:13:19Z) - Reconstructing Training Data with Informed Adversaries [30.138217209991826]
機械学習モデルへのアクセスを考えると、敵はモデルのトレーニングデータを再構築できるだろうか?
本研究は、この疑問を、学習データポイントの全てを知っている強力な情報提供者のレンズから研究する。
この厳密な脅威モデルにおいて、残りのデータポイントを再構築することは可能であることを示す。
論文 参考訳(メタデータ) (2022-01-13T09:19:25Z) - Curse or Redemption? How Data Heterogeneity Affects the Robustness of
Federated Learning [51.15273664903583]
データの不均一性は、フェデレートラーニングにおける重要な特徴の1つとして認識されているが、しばしば敵対的攻撃に対する堅牢性のレンズで見過ごされる。
本稿では, 複合学習におけるバックドア攻撃の影響を, 総合的な実験を通じて評価し, 理解することを目的とした。
論文 参考訳(メタデータ) (2021-02-01T06:06:21Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
敵攻撃は、敵の例でディープニューラルネットワークを騙すことを目的としている。
本稿では、攻撃履歴から学習し、より効率的に攻撃を開始することができる強化学習に基づく攻撃モデルを提案する。
論文 参考訳(メタデータ) (2020-09-19T09:12:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。