論文の概要: GowFed -- A novel Federated Network Intrusion Detection System
- arxiv url: http://arxiv.org/abs/2210.16441v1
- Date: Fri, 28 Oct 2022 23:53:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 19:12:28.508901
- Title: GowFed -- A novel Federated Network Intrusion Detection System
- Title(参考訳): GowFed - 新たなフェデレーションネットワーク侵入検知システム
- Authors: Aitor Belenguer, Jose A. Pascual, Javier Navaridas
- Abstract要約: 本研究は,Gower Dissimilarity行列とFederated Averagingを併用したネットワーク脅威検出システムであるGowFedを紹介する。
GowFedのアプローチは,(1)バニラバージョン,(2)アテンション機構を備えたバージョンなど,最先端の知識に基づいて開発されている。
全体として、GowFedは、産業レベルのネットワークにおけるネットワーク脅威を検出するためのフェデレートラーニングとガウワーの相違行列の併用に向けた最初の一歩となる。
- 参考スコア(独自算出の注目度): 0.15469452301122172
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Network intrusion detection systems are evolving into intelligent systems
that perform data analysis while searching for anomalies in their environment.
Indeed, the development of deep learning techniques paved the way to build more
complex and effective threat detection models. However, training those models
may be computationally infeasible in most Edge or IoT devices. Current
approaches rely on powerful centralized servers that receive data from all
their parties -- violating basic privacy constraints and substantially
affecting response times and operational costs due to the huge communication
overheads. To mitigate these issues, Federated Learning emerged as a promising
approach, where different agents collaboratively train a shared model, without
exposing training data to others or requiring a compute-intensive centralized
infrastructure. This work presents GowFed, a novel network threat detection
system that combines the usage of Gower Dissimilarity matrices and Federated
averaging. Different approaches of GowFed have been developed based on state-of
the-art knowledge: (1) a vanilla version; and (2) a version instrumented with
an attention mechanism. Furthermore, each variant has been tested using
simulation oriented tools provided by TensorFlow Federated framework. In the
same way, a centralized analogous development of the Federated systems is
carried out to explore their differences in terms of scalability and
performance -- across a set of designed experiments/scenarios. Overall, GowFed
intends to be the first stepping stone towards the combined usage of Federated
Learning and Gower Dissimilarity matrices to detect network threats in
industrial-level networks.
- Abstract(参考訳): ネットワーク侵入検知システムは、環境内の異常を検索しながらデータ分析を行うインテリジェントシステムに進化している。
実際、ディープラーニング技術の開発は、より複雑で効果的な脅威検出モデルを構築するための道を開いた。
しかし、これらのモデルのトレーニングは、ほとんどのEdgeやIoTデバイスでは計算不可能である可能性がある。
現在のアプローチは、すべてのパーティからデータを受け取る強力な集中型サーバに依存している -- 基本的なプライバシの制約に違反し、通信のオーバーヘッドが大きいため、応答時間や運用コストに大きな影響を与えている。
これらの問題を緩和するため、フェデレートラーニングは有望なアプローチとして現れ、さまざまなエージェントが、他の人にトレーニングデータを公開したり、計算集約的なインフラストラクチャを必要とすることなく、共有モデルを共同でトレーニングする。
本研究は,gower dis similarity matricesとfederated averagingを組み合わせた新しいネットワーク脅威検出システムであるgowfedを提案する。
gowfedのアプローチは,(1)バニラ版,(2)注意機構を備えたバージョンという,最先端の知識に基づいて開発されてきた。
さらに、TensorFlow Federatedフレームワークが提供するシミュレーション指向のツールを使用して、各変種がテストされている。
同様に、フェデレーションシステムの中央集権的な類似開発が実施され、設計された実験/シナリオのセット間で、スケーラビリティとパフォーマンスの観点から、彼らの違いを探求する。
全体として、GowFedは、産業レベルのネットワークにおけるネットワーク脅威を検出するためのフェデレートラーニングとガウワーの相違行列の併用に向けた最初の一歩となる。
関連論文リスト
- Enhanced Anomaly Detection in Industrial Control Systems aided by Machine Learning [2.2457306746668766]
本研究は,ICS環境におけるネットワークデータとプロセスデータの組み合わせによる攻撃検出の改善について検討する。
この結果から,ネットワークトラフィックと運用プロセスデータの統合により,検出能力が向上することが示唆された。
結果は有望だが、彼らは予備的であり、さらなる研究の必要性を強調している。
論文 参考訳(メタデータ) (2024-10-25T17:41:33Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
本稿では,IDSのための事前学習MLモデルと構成の動的適応のための結合パイプラインに,特徴選択,モデルプルーニング,微調整技術を統合する新しいソリューションであるINTELLECTを紹介する。
我々は,知識蒸留技術を微調整中に組み込むことの利点を実証し,MLモデルが歴史的知識を維持しつつ,局所的なネットワークパターンに一貫して適応できることを示す。
論文 参考訳(メタデータ) (2024-07-17T22:34:29Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Network Anomaly Detection Using Federated Learning [0.483420384410068]
我々は、効率的なネットワーク異常検出を可能にする堅牢でスケーラブルなフレームワークを導入する。
複数の参加者が共同でグローバルモデルをトレーニングするフェデレーション学習を活用します。
提案手法はUNSW-NB15データセットのベースライン機械学習手法よりも優れている。
論文 参考訳(メタデータ) (2023-03-13T20:16:30Z) - A review of Federated Learning in Intrusion Detection Systems for IoT [0.15469452301122172]
侵入検知システムは、環境中の異常を検索するデータ分析を行うインテリジェントシステムへと進化している。
ディープラーニング技術は、より複雑で効果的な脅威検出モデルを構築するための扉を開いた。
現在のアプローチは、すべてのパーティからデータを受け取る強力な集中型サーバに依存しています。
本稿では,侵入検出分野におけるフェデレートラーニング手法の適用に焦点を当てた。
論文 参考訳(メタデータ) (2022-04-26T17:00:07Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - From Federated to Fog Learning: Distributed Machine Learning over
Heterogeneous Wireless Networks [71.23327876898816]
フェデレートラーニング(Federated Learning)は、データを収集するノード間で処理能力を活用することによって、ネットワークエッジでMLモデルをトレーニングするテクニックとして登場した。
我々は、エッジデバイスからクラウドサーバへのノード連続体にMLモデルのトレーニングをインテリジェントに分散する、フォグラーニングと呼ばれる新しい学習パラダイムを提唱する。
論文 参考訳(メタデータ) (2020-06-07T05:11:18Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。