INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments
- URL: http://arxiv.org/abs/2407.13043v2
- Date: Sun, 21 Jul 2024 09:24:21 GMT
- Title: INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments
- Authors: Simone Magnani, Liubov Nedoshivina, Roberto Doriguzzi-Corin, Stefano Braghin, Domenico Siracusa,
- Abstract summary: This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
- Score: 0.055923945039144884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The widespread adoption of cloud computing, edge, and IoT has increased the attack surface for cyber threats. This is due to the large-scale deployment of often unsecured, heterogeneous devices with varying hardware and software configurations. The diversity of these devices attracts a wide array of potential attack methods, making it challenging for individual organizations to have comprehensive knowledge of all possible threats. In this context, powerful anomaly detection models can be developed by combining data from different parties using Federated Learning. FL enables the collaborative development of ML-based IDSs without requiring the parties to disclose sensitive training data, such as network traffic or sensor readings. However, deploying the resulting models can be challenging, as they may require more computational resources than those available on target devices with limited capacity or already allocated for other operations. Training device-specific models is not feasible for an organization because a significant portion of the training data is private to other participants in the FL process. To address these challenges, this paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs. Through empirical evaluation, we analyze the benefits of INTELLECT's approach in tailoring ML models to the specific resource constraints of an organization's devices and measure variations in traffic classification accuracy resulting from feature selection, pruning, and fine-tuning operations. Additionally, we demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
Related papers
- Federated Learning for Misbehaviour Detection with Variational Autoencoders and Gaussian Mixture Models [0.2999888908665658]
Federated Learning (FL) has become an attractive approach to collaboratively train Machine Learning (ML) models.
This work proposes a novel unsupervised FL approach for the identification of potential misbehavior in vehicular environments.
We leverage the computing capabilities of public cloud services for model aggregation purposes.
arXiv Detail & Related papers (2024-05-16T08:49:50Z) - Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets.
By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization.
arXiv Detail & Related papers (2024-04-05T16:01:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - GowFed -- A novel Federated Network Intrusion Detection System [0.15469452301122172]
This work presents GowFed, a novel network threat detection system that combines the usage of Gower Dissimilarity matrices and Federated averaging.
Different approaches of GowFed have been developed based on state-of the-art knowledge: (1) a vanilla version; and (2) a version instrumented with an attention mechanism.
Overall, GowFed intends to be the first stepping stone towards the combined usage of Federated Learning and Gower Dissimilarity matrices to detect network threats in industrial-level networks.
arXiv Detail & Related papers (2022-10-28T23:53:37Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.