論文の概要: Federated clustering with GAN-based data synthesis
- arxiv url: http://arxiv.org/abs/2210.16524v2
- Date: Mon, 23 Oct 2023 11:01:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 14:26:07.224636
- Title: Federated clustering with GAN-based data synthesis
- Title(参考訳): GANに基づくデータ合成によるフェデレーションクラスタリング
- Authors: Jie Yan, Jing Liu, Ji Qi and Zhong-Yuan Zhang
- Abstract要約: フェデレーションクラスタリング(FC)は、フェデレーション設定における集中クラスタリングの拡張である。
我々は、SDA-FCと呼ばれる新しいフェデレーションクラスタリングフレームワークを提案する。
各クライアントで生成する敵ネットワークをローカルにトレーニングし、生成した合成データをサーバにアップロードし、合成データ上でKMまたはFCMを実行する。
合成データにより、非IID問題に対してモデルが免疫しやすくなり、プライベートデータを共有することなく、より効率的にグローバルな類似性特性を捉えることができる。
- 参考スコア(独自算出の注目度): 12.256298398007848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated clustering (FC) is an extension of centralized clustering in
federated settings. The key here is how to construct a global similarity
measure without sharing private data, since the local similarity may be
insufficient to group local data correctly and the similarity of samples across
clients cannot be directly measured due to privacy constraints. Obviously, the
most straightforward way to analyze FC is to employ the methods extended from
centralized ones, such as K-means (KM) and fuzzy c-means (FCM). However, they
are vulnerable to non independent-and-identically-distributed (non-IID) data
among clients. To handle this, we propose a new federated clustering framework,
named synthetic data aided federated clustering (SDA-FC). It trains generative
adversarial network locally in each client and uploads the generated synthetic
data to the server, where KM or FCM is performed on the synthetic data. The
synthetic data can make the model immune to the non-IID problem and enable us
to capture the global similarity characteristics more effectively without
sharing private data. Comprehensive experiments reveals the advantages of
SDA-FC, including superior performance in addressing the non-IID problem and
the device failures.
- Abstract(参考訳): フェデレーションクラスタリング(FC)は、フェデレーション設定における集中クラスタリングの拡張である。
ローカルな類似性は、ローカルなデータを正しくグループ化するには不十分であり、クライアント間でのサンプルの類似性はプライバシの制約のため直接測定できないため、プライベートデータを共有せずにグローバルな類似性尺度を構築する方法が鍵となる。
FCを分析する最も簡単な方法は、K-means (KM) やfuzzy c-means (FCM) のような集中型から拡張された手法を採用することである。
しかし、クライアント間での非独立分散(非IID)データに対して脆弱である。
そこで我々は,SDA-FC(Synthetic data aided Federated Clustering)と呼ばれる新しいフェデレーションクラスタリングフレームワークを提案する。
各クライアントで生成する敵ネットワークをローカルにトレーニングし、生成した合成データをサーバにアップロードし、合成データ上でKMまたはFCMを実行する。
合成データにより、非IID問題に対してモデルが免疫し、プライベートデータを共有することなく、より効率的にグローバルな類似性特性を捉えることができる。
総合的な実験によりSDA-FCの利点が明らかとなり、非IID問題とデバイス故障に対処する際の優れた性能が示された。
関連論文リスト
- PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
本稿では,同じフェデレーションネットワークにおけるデータの統計的不均一性の問題に焦点をあてる。
FedAvg、FedProx、Federated Curvature(FedCurv)など、いくつかのフェデレートラーニングアルゴリズムがすでに提案されている。
この研究の副産物として、FLコミュニティからのさらなる比較を容易にするために使用したデータセットの非IIDバージョンをリリースします。
論文 参考訳(メタデータ) (2023-03-31T10:13:01Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
クラスタリングクラスタ(FedC)問題は、巨大なクライアント上に分散されたラベルなしデータサンプルを、サーバのオーケストレーションの下で有限のクライアントに正確に分割することを目的としている。
本稿では,DP-Fedと呼ばれる差分プライバシー収束手法を用いた新しいFedCアルゴリズムを提案する。
提案するDP-Fedの様々な属性は、プライバシー保護の理論的解析、特に非識別的かつ独立に分散された(非i.d.)データの場合において得られる。
論文 参考訳(メタデータ) (2023-01-03T05:38:43Z) - Privacy-Preserving Federated Deep Clustering based on GAN [12.256298398007848]
我々はGAN(Generative Adversarial Networks)に基づくフェデレーションディープクラスタリングへの新しいアプローチを提案する。
各クライアントは、ローカルな生成敵ネットワーク(GAN)をローカルにトレーニングし、合成データをサーバにアップロードする。
サーバは合成データに深いクラスタリングネットワークを適用して$k$のクラスタセントロイドを確立し、クラスタ割り当てのためにクライアントにダウンロードする。
論文 参考訳(メタデータ) (2022-11-30T13:20:11Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Efficient Distribution Similarity Identification in Clustered Federated
Learning via Principal Angles Between Client Data Subspaces [59.33965805898736]
クラスタ学習は、クライアントをクラスタにグループ化することで、有望な結果をもたらすことが示されている。
既存のFLアルゴリズムは基本的に、クライアントを同様のディストリビューションでグループ化しようとしている。
以前のFLアルゴリズムは、訓練中に間接的に類似性を試みていた。
論文 参考訳(メタデータ) (2022-09-21T17:37:54Z) - Federated Learning with GAN-based Data Synthesis for Non-IID Clients [8.304185807036783]
フェデレートラーニング(FL)は、最近、プライバシ保護のためのコラボレーティブラーニングパラダイムとして人気を博している。
我々は,合成データを共有することで,この非IID課題を解決するために,SDA-FL(Synthetic Data Aided Federated Learning)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-11T11:43:25Z) - Secure Federated Clustering [18.37669220755388]
SecFCはセキュアなフェデレーションクラスタリングアルゴリズムであり、同時にユニバーサルパフォーマンスを実現する。
各クライアントのプライベートデータとクラスタセンターは、他のクライアントやサーバにリークされない。
論文 参考訳(メタデータ) (2022-05-31T06:47:18Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護のためのコラボレーション機械学習パラダイムである。
本稿では,この課題に対処するため,データヘテロジニアス・ロバストFLアプローチであるFedGSPを提案する。
その結果,FedGSPは7つの最先端アプローチと比較して平均3.7%の精度向上を実現していることがわかった。
論文 参考訳(メタデータ) (2022-01-31T03:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。