Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Parsers
- URL: http://arxiv.org/abs/2210.16613v1
- Date: Sat, 29 Oct 2022 14:30:53 GMT
- Title: Diverse Parallel Data Synthesis for Cross-Database Adaptation of
Text-to-SQL Parsers
- Authors: Abhijeet Awasthi, Ashutosh Sathe, Sunita Sarawagi
- Abstract summary: Adapting to new databases is a challenging problem due to the lack of natural language queries in the new schemas.
We present ReFill, a framework for adapting a Text-to-edit to a target schema.
- Score: 21.272952382662215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL parsers typically struggle with databases unseen during the train
time. Adapting parsers to new databases is a challenging problem due to the
lack of natural language queries in the new schemas. We present ReFill, a
framework for synthesizing high-quality and textually diverse parallel datasets
for adapting a Text-to-SQL parser to a target schema. ReFill learns to
retrieve-and-edit text queries from the existing schemas and transfers them to
the target schema. We show that retrieving diverse existing text, masking their
schema-specific tokens, and refilling with tokens relevant to the target
schema, leads to significantly more diverse text queries than achievable by
standard SQL-to-Text generation methods. Through experiments spanning multiple
databases, we demonstrate that fine-tuning parsers on datasets synthesized
using ReFill consistently outperforms the prior data-augmentation methods.
Related papers
- Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
We present a schema-aware multi-task learning framework (named MT) for complicatedsql queries.
Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings.
On the decoder side, we define 6-type relationships to describe the connections between tables and columns.
arXiv Detail & Related papers (2024-03-09T01:13:37Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
We introduce a novel Transformer architecture specifically crafted to perform text-to-gressive translation tasks.
Our model predicts queries as abstract syntax trees (ASTs) in an autore way, incorporating structural inductive bias in the executable and decoder layers.
arXiv Detail & Related papers (2023-10-27T00:13:59Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
We introduce a UNIfied benchmark for Text-to-domain systems.
It is composed of publicly available text-to-domain datasets and 29K databases.
Compared to the widely used Spider benchmark, we introduce a threefold increase in SQL patterns.
arXiv Detail & Related papers (2023-05-25T17:19:52Z) - Prompting GPT-3.5 for Text-to-SQL with De-semanticization and Skeleton
Retrieval [17.747079214502673]
Text-to- is a task that converts a natural language question into a structured query language () to retrieve information from a database.
In this paper, we propose an LLM-based framework for Text-to- which retrieves helpful demonstration examples to prompt LLMs.
We design a de-semanticization mechanism that extracts question skeletons, allowing us to retrieve similar examples based on their structural similarity.
arXiv Detail & Related papers (2023-04-26T06:02:01Z) - On the Structural Generalization in Text-to-SQL [36.56043090037171]
We study the structure variety of database schema(DS).
We propose a framework to generate novel text-to- structural data.
Significant performance reduction when evaluating well-trained text-to- models on the synthetic samples.
arXiv Detail & Related papers (2023-01-12T02:52:51Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
State-of-the-art text-to-weighted algorithms did not further improve on popular benchmarks when trained with augmented synthetic data.
We propose a novel framework that incorporates key relationships from schema, imposes strong typing, and schema-weighted column sampling.
arXiv Detail & Related papers (2022-12-17T02:53:21Z) - Augmenting Multi-Turn Text-to-SQL Datasets with Self-Play [46.07002748587857]
We explore augmenting the training datasets using self-play, which leverages contextual information to synthesize new interactions.
We find that self-play improves the accuracy of a strong baseline on SParC and Co, two widely used text-to-domain datasets.
arXiv Detail & Related papers (2022-10-21T16:40:07Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
We propose a framework to elicit relational structures via a probing procedure based on Poincar'e distance metric.
Compared with commonly-used rule-based methods for schema linking, we found that probing relations can robustly capture semantic correspondences.
Our framework sets new state-of-the-art performance on three benchmarks.
arXiv Detail & Related papers (2022-06-28T14:05:25Z) - Bridging Textual and Tabular Data for Cross-Domain Text-to-SQL Semantic
Parsing [110.97778888305506]
BRIDGE represents the question and DB schema in a tagged sequence where a subset of the fields are augmented with cell values mentioned in the question.
BRIDGE attained state-of-the-art performance on popular cross-DB text-to- relational benchmarks.
Our analysis shows that BRIDGE effectively captures the desired cross-modal dependencies and has the potential to generalize to more text-DB related tasks.
arXiv Detail & Related papers (2020-12-23T12:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.