論文の概要: Time-aware Metapath Feature Augmentation for Ponzi Detection in Ethereum
- arxiv url: http://arxiv.org/abs/2210.16863v2
- Date: Mon, 1 Apr 2024 09:13:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:21:15.310975
- Title: Time-aware Metapath Feature Augmentation for Ponzi Detection in Ethereum
- Title(参考訳): EthereumにおけるPonzi検出のための時間認識メタパス機能拡張
- Authors: Chengxiang Jin, Jiajun Zhou, Jie Jin, Jiajing Wu, Qi Xuan,
- Abstract要約: ポンツィの策略とフィッシング詐欺は、分散金融を著しく脅かしている。
ブロックチェーン上の既存のグラフベースの異常な振る舞い検出方法は、通常、均質なトランザクショングラフの構築に重点を置いている。
我々は、リアルタイムメタパスベースのトランザクションパターンをキャプチャするためのプラグイン・アンド・プレイモジュールとして、TMFAug(Time-aware Metapath Feature Augmentation)を導入する。
- 参考スコア(独自算出の注目度): 5.934595786654019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of Web 3.0 which emphasizes decentralization, blockchain technology ushers in its revolution and also brings numerous challenges, particularly in the field of cryptocurrency. Recently, a large number of criminal behaviors continuously emerge on blockchain, such as Ponzi schemes and phishing scams, which severely endanger decentralized finance. Existing graph-based abnormal behavior detection methods on blockchain usually focus on constructing homogeneous transaction graphs without distinguishing the heterogeneity of nodes and edges, resulting in partial loss of transaction pattern information. Although existing heterogeneous modeling methods can depict richer information through metapaths, the extracted metapaths generally neglect temporal dependencies between entities and do not reflect real behavior. In this paper, we introduce Time-aware Metapath Feature Augmentation (TMFAug) as a plug-and-play module to capture the real metapath-based transaction patterns during Ponzi scheme detection on Ethereum. The proposed module can be adaptively combined with existing graph-based Ponzi detection methods. Extensive experimental results show that our TMFAug can help existing Ponzi detection methods achieve significant performance improvements on the Ethereum dataset, indicating the effectiveness of heterogeneous temporal information for Ponzi scheme detection.
- Abstract(参考訳): 分散化を重視したWeb 3.0の開発により、ブロックチェーン技術はその革命を後押しし、特に暗号通貨分野において多くの課題をもたらしている。
最近では、Ponziスキームやフィッシング詐欺など、ブロックチェーン上での多数の犯罪行為が継続的に発生し、分散金融を非常に危険に晒している。
ブロックチェーン上の既存のグラフベースの異常な振る舞い検出方法は、通常、ノードとエッジの不均一性を区別することなく、均質なトランザクショングラフを構築することに重点を置いており、結果としてトランザクションパターン情報が部分的に失われる。
既存の異種モデリング手法はメタパスを通してより豊かな情報を表現できるが、抽出されたメタパスは一般にエンティティ間の時間的依存関係を無視し、実際の振る舞いを反映しない。
本稿では,Ethereum上のPonziスキーム検出中に,実際のメタパスベースのトランザクションパターンをキャプチャするプラグイン・アンド・プレイモジュールとして,TMFAug(Time-Aware Metapath Feature Augmentation)を導入する。
提案モジュールは,既存のグラフベースのPonzi検出手法と適応的に組み合わせることができる。
我々のTMFAugは,既存のPonzi検出手法がEthereumデータセットの性能向上に有効であることを示し,Ponziスキーム検出における異種時間情報の有効性を示した。
関連論文リスト
- Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-supervision [4.497245600377944]
本稿では,メタIFD(Meta-IFD)という2つの自己スーパービジョン強化詐欺検出フレームワークを提案する。
この枠組みは、最初はアカウントの相互作用を増強する生成的自己スーパービジョン機構を導入し、続いて様々な行動パターンを区別する対照的な自己スーパービジョン機構を導入した。
ソースコードは近いうちにGitHubでリリースされる予定だ。
論文 参考訳(メタデータ) (2024-08-01T15:30:43Z) - Towards Effective Detection of Ponzi schemes on Ethereum with Contract Runtime Behavior Graph [17.79695486585971]
詐欺の一種であるポンツィスキームは、近年スマートコントラクトで発見され、巨額の損失をもたらした。
既存の検出手法は主にルールベースのアプローチと機械学習技術に焦点を当てている。
PonziGuardは,契約実行時の動作に基づく効率的なPonzi検出手法である。
論文 参考訳(メタデータ) (2024-06-03T01:17:48Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
MultItask acTIve Graph Anomaly Detection framework,すなわちMITIGATEを提案する。
ノード分類タスクを結合することにより、MITIGATEは既知の異常を伴わずに配布外ノードを検出する能力を得る。
4つのデータセットに関する実証的研究は、MITIGATEが異常検出のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-24T03:43:45Z) - Probabilistic Sampling-Enhanced Temporal-Spatial GCN: A Scalable
Framework for Transaction Anomaly Detection in Ethereum Networks [2.795656498870966]
本研究では、時間ランダムウォーク(TRW)とグラフ畳み込みネットワーク(GCN)の融合について述べる。
我々のアプローチは、従来のGCNとは異なり、TRWの強みを利用してトランザクションの複雑な時間シーケンスを識別する。
TRW-GCNフレームワークが従来のGCNよりも性能指標を大幅に向上することを示す予備評価を行った。
論文 参考訳(メタデータ) (2023-09-29T21:08:21Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
本研究では,2つのモード間の分布ギャップを埋めるために,事前学習された視覚変換器(ViT)の潜在可能性を探る。
本研究では,いくつかのトークンの特定のモダリティをランダムにマスキングし,異なるモダリティのトークン間の相互作用を積極的に行うマスクモデリング戦略を提案する。
実験により,我々のプラグアンドプレイトレーニング強化技術は,追跡精度と成功率の両方の観点から,最先端のワンストリームと2つのトラッカーストリームを大幅に向上させることができることが示された。
論文 参考訳(メタデータ) (2023-07-09T08:58:47Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
フィッシング詐欺検出方法は、被害者を保護し、より健全なブロックチェーンエコシステムを構築する。
ユーザのためのトランザクションパターングラフを定義し,フィッシング詐欺検出をグラフ分類タスクに変換する。
提案したマルチチャネルグラフ分類モデル(MCGC)は,対象ユーザのトランザクションパターンの特徴を抽出することにより,潜在的なフィッシングを検出することができる。
論文 参考訳(メタデータ) (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
アカウントのアイデンティティに関する事前推論を目的としたアイデンティティ推論は、ブロックチェーンセキュリティにおいて重要な役割を果たします。
本稿では,id推論タスクをグラフ分類パターンに変換するトランザクションサブグラフの観点から,ユーザの行動を解析するための新しい手法を提案する。
また、$textI2 textBGNN$という汎用的なエンドツーエンドグラフニューラルネットワークモデルを提案し、サブグラフを入力として受け入れ、トランザクションサブグラフパターンをアカウントアイデンティティにマッピングする関数を学ぶことができる。
論文 参考訳(メタデータ) (2021-04-14T00:15:38Z) - Real-Time Anomaly Detection in Edge Streams [49.26098240310257]
マイクロクラスタ異常の検出に焦点を当てたMIDASを提案する。
さらに、アルゴリズムの内部状態に異常が組み込まれている問題を解くために、MIDAS-Fを提案する。
実験の結果,MIDAS-Fの精度はMIDASよりも有意に高かった。
論文 参考訳(メタデータ) (2020-09-17T17:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。