FatNet: High Resolution Kernels for Classification Using Fully
Convolutional Optical Neural Networks
- URL: http://arxiv.org/abs/2210.16914v1
- Date: Sun, 30 Oct 2022 18:31:46 GMT
- Title: FatNet: High Resolution Kernels for Classification Using Fully
Convolutional Optical Neural Networks
- Authors: Riad Ibadulla, Thomas M. Chen, Constantino Carlos Reyes-Aldasoro
- Abstract summary: This paper describes the transformation of a traditional in-silico classification network into an optical fully convolutional neural network.
We present FatNet for the classification of images, which is more compatible with free-space acceleration.
Results show 8.2 times fewer convolution operations at the cost of only 6% lower accuracy compared to the original network.
- Score: 0.3867363075280543
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes the transformation of a traditional in-silico
classification network into an optical fully convolutional neural network with
high-resolution feature maps and kernels. When using the free-space 4f system
to accelerate the inference speed of neural networks, higher resolutions of
feature maps and kernels can be used without the loss in frame rate. We present
FatNet for the classification of images, which is more compatible with
free-space acceleration than standard convolutional classifiers. It neglects
the standard combination of convolutional feature extraction and classifier
dense layers by performing both in one fully convolutional network. This
approach takes full advantage of the parallelism in the 4f free-space system
and performs fewer conversions between electronics and optics by reducing the
number of channels and increasing the resolution, making the network faster in
optics than off-the-shelf networks. To demonstrate the capabilities of FatNet,
it trained with the CIFAR100 dataset on GPU and the simulator of the 4f system,
then compared the results against ResNet-18. The results show 8.2 times fewer
convolution operations at the cost of only 6% lower accuracy compared to the
original network. These are promising results for the approach of training deep
learning with high-resolution kernels in the direction towards the upcoming
optics era.
Related papers
- Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
We show that for a particular choice of mask weights that do not depend on the learning targets, this kernel is equivalent to the NTK of the gated ReLU network on the training data.
A consequence of this lack of dependence on the targets is that the NTK cannot perform better than the optimal MKL kernel on the training set.
arXiv Detail & Related papers (2023-09-26T17:42:52Z) - Speed Limits for Deep Learning [67.69149326107103]
Recent advancement in thermodynamics allows bounding the speed at which one can go from the initial weight distribution to the final distribution of the fully trained network.
We provide analytical expressions for these speed limits for linear and linearizable neural networks.
Remarkably, given some plausible scaling assumptions on the NTK spectra and spectral decomposition of the labels -- learning is optimal in a scaling sense.
arXiv Detail & Related papers (2023-07-27T06:59:46Z) - Connection Reduction Is All You Need [0.10878040851637998]
Empirical research shows that simply stacking convolutional layers does not make the network train better.
We propose two new algorithms to connect layers.
ShortNet1 has a 5% lower test error rate and 25% faster inference time than Baseline.
arXiv Detail & Related papers (2022-08-02T13:00:35Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
We show a hardware-efficient dynamic inference regime, named dynamic weight slicing, which adaptively slice a part of network parameters for inputs with diverse difficulty levels.
We present dynamic slimmable network (DS-Net) and dynamic slice-able network (DS-Net++) by input-dependently adjusting filter numbers of CNNs and multiple dimensions in both CNNs and transformers.
arXiv Detail & Related papers (2021-09-21T09:57:21Z) - FuSeConv: Fully Separable Convolutions for Fast Inference on Systolic
Arrays [2.8583189395674653]
We propose FuSeConv as a drop-in replacement for depth-wise separable convolution.
FuSeConv generalizes the decomposition of convolutions fully to separable 1D convolutions along spatial and depth dimensions.
We achieve a significant speed-up of 3x-7x with the MobileNet family of networks on a systolic array of size 64x64, with comparable accuracy on the ImageNet dataset.
arXiv Detail & Related papers (2021-05-27T20:19:39Z) - Knowledge Distillation Circumvents Nonlinearity for Optical
Convolutional Neural Networks [4.683612295430957]
We propose a Spectral CNN Linear Counterpart (SCLC) network architecture and develop a Knowledge Distillation (KD) approach to circumvent the need for a nonlinearity.
We show that the KD approach can achieve performance that easily surpasses the standard linear version of a CNN and could approach the performance of the nonlinear network.
arXiv Detail & Related papers (2021-02-26T06:35:34Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - A Light-Weighted Convolutional Neural Network for Bitemporal SAR Image
Change Detection [40.58864817923371]
We propose a lightweight neural network to reduce the computational and spatial complexity.
In the proposed network, we replace normal convolutional layers with bottleneck layers that keep the same number of channels between input and output.
We verify our light-weighted neural network on four sets of bitemporal SAR images.
arXiv Detail & Related papers (2020-05-29T04:01:32Z) - Cross-filter compression for CNN inference acceleration [4.324080238456531]
We propose a new cross-filter compression method that can provide $sim32times$ memory savings and $122times$ speed up in convolution operations.
Our method, based on Binary-Weight and XNOR-Net separately, is evaluated on CIFAR-10 and ImageNet dataset.
arXiv Detail & Related papers (2020-05-18T19:06:14Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
This paper presents a new framework named network adjustment, which considers network accuracy as a function of FLOPs.
Experiments on standard image classification datasets and a wide range of base networks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-06T15:51:00Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.