Improving Multi-generation Robustness of Learned Image Compression
- URL: http://arxiv.org/abs/2210.17039v1
- Date: Mon, 31 Oct 2022 03:26:11 GMT
- Title: Improving Multi-generation Robustness of Learned Image Compression
- Authors: Litian Li, Zheng Yang, Ronggang Wang
- Abstract summary: We show that LIC can achieve comparable performance to the first compression of BPG even after 50 times reencoding without any change of the network structure.
- Score: 16.86614420872084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefit from flexible network designs and end-to-end joint optimization
approach, learned image compression (LIC) has demonstrated excellent coding
performance and practical feasibility in recent years. However, existing
compression models suffer from serious multi-generation loss, which always
occurs during image editing and transcoding. During the process of repeatedly
encoding and decoding, the quality of the image will rapidly degrade, resulting
in various types of distortion, which significantly limits the practical
application of LIC. In this paper, a thorough analysis is carried out to
determine the source of generative loss in successive image compression (SIC).
We point out and solve the quantization drift problem that affects SIC,
reversibility loss function as well as channel relaxation method are proposed
to further reduce the generation loss. Experiments show that by using our
proposed solutions, LIC can achieve comparable performance to the first
compression of BPG even after 50 times reencoding without any change of the
network structure.
Related papers
- CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.
During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)
RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaption [52.82508784748278]
This paper proposes a Control Generative Image Compression framework, termed Control-GIC.
Control-GIC is capable of fine-grained adaption across a broad spectrum while ensuring high-fidelity and generality compression.
We develop a conditional decoder capable of retrieving historic multi-granularity representations according to encoded codes, and then reconstruct hierarchical features in the formalization of conditional probability.
arXiv Detail & Related papers (2024-06-02T14:22:09Z) - VCISR: Blind Single Image Super-Resolution with Video Compression
Synthetic Data [18.877077302923713]
We present a video compression-based degradation model to synthesize low-resolution image data in the blind SISR task.
Our proposed image synthesizing method is widely applicable to existing image datasets.
By introducing video coding artifacts to SISR degradation models, neural networks can super-resolve images with the ability to restore video compression degradations.
arXiv Detail & Related papers (2023-11-02T05:24:19Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Learned Video Compression via Heterogeneous Deformable Compensation
Network [78.72508633457392]
We propose a learned video compression framework via heterogeneous deformable compensation strategy (HDCVC) to tackle the problems of unstable compression performance.
More specifically, the proposed algorithm extracts features from the two adjacent frames to estimate content-Neighborhood heterogeneous deformable (HetDeform) kernel offsets.
Experimental results indicate that HDCVC achieves superior performance than the recent state-of-the-art learned video compression approaches.
arXiv Detail & Related papers (2022-07-11T02:31:31Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
Lossy compression algorithms target tradeoffs by quantizating high frequency data to increase compression rates.
We propose a new method of optimizing quantization tables using Deep Learning and a minimax loss function.
arXiv Detail & Related papers (2021-12-14T07:35:22Z) - Modeling Lost Information in Lossy Image Compression [72.69327382643549]
Lossy image compression is one of the most commonly used operators for digital images.
We propose a novel invertible framework called Invertible Lossy Compression (ILC) to largely mitigate the information loss problem.
arXiv Detail & Related papers (2020-06-22T04:04:56Z) - Learning Better Lossless Compression Using Lossy Compression [100.50156325096611]
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system.
We model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction.
Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder.
arXiv Detail & Related papers (2020-03-23T11:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.