Quantum non-stationary phenomena of spin systems in collision models
- URL: http://arxiv.org/abs/2210.17091v2
- Date: Sat, 8 Apr 2023 14:21:40 GMT
- Title: Quantum non-stationary phenomena of spin systems in collision models
- Authors: Yan Li, Xingli Li and Jiasen Jin
- Abstract summary: We investigate the non-stationary phenomenon in a tripartite spin-1/2 system in the collision model (CM) framework.
We find the emergence of long-time oscillation in the dynamics of the system and the synchronization among subsystems.
- Score: 3.0429703764855343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the non-stationary phenomenon in a tripartite spin-1/2 system
in the collision model (CM) framework. After introducing the dissipation
through the system-environment collision for both Markovian and non-Markovian
cases, we find the emergence of long-time oscillation in the dynamics of the
system and the synchronization among subsystems. We connect the CM description
and the quantum master equation in the continuous time limit and explain the
existence of the stable oscillation by means of Liouvillian spectrum analysis.
The time-dependence of the thermal property and the correlations are
investigated, in particular we discuss the possibility of violation of the
Landauer's principle in non-Markovian dynamics. In addition, we find that the
imperfection of collective dissipation can be compensated by the randomness of
the interaction sequence in our CM.
Related papers
- Quantum-classical correspondence of non-Hermitian spin-orbit coupled bosonic junction [4.934387267206206]
We show that near the symmetry-breaking phase transition point, the correspondence between classical (mean-field) and quantum dynamics is more likely to break down.
In both the mean-field and many-particle models, the SOC effects can greatly promote the synchronous periodic oscillations between the spin-up and spin-down components.
arXiv Detail & Related papers (2024-10-17T02:58:17Z) - Emergent Continuous Time Crystal in Dissipative Quantum Spin System without Driving [1.641189223782504]
Time crystal, a nonequilibrium phenomenon extending spontaneous symmetry breaking into the temporal dimension, holds fundamental significance in quantum many-body physics.
We numerically identify the emergence of novel nonstationary oscillatory states by analyzing the spin dynamics.
This study provides many insights into the intricate interplay between the dissipation-induced spin downwards and anisotropic-interaction-induced spin precession or spin fluctuation.
arXiv Detail & Related papers (2024-03-13T12:40:32Z) - Temporal fluctuations of correlators in integrable and chaotic quantum
systems [0.0]
We provide bounds on temporal fluctuations around the infinite-time average of out-of-time-ordered and time-ordered correlators of many-body quantum systems without energy gap degeneracies.
For physical initial states, our bounds predict the exponential decay of the temporal fluctuations as a function of the system size.
arXiv Detail & Related papers (2023-07-17T12:35:38Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Synchronization of persistent oscillations in spin systems with
non-local dissipations [3.0429703764855343]
We explore the synchronization phenomenon in the quantum few-body system of spins with the non-local dissipation.
Without the external driving, we find that the system can exhibit stable oscillatory behaviors in the long-time dynamics.
The oscillations of the next-nearest-neighboring spins are completely synchronized by the quantum analysis within the Schr"odinger equation.
arXiv Detail & Related papers (2022-07-14T12:29:38Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Synchronisation phase as an indicator of persistent quantum correlations
between subsystems [68.8204255655161]
Spontaneous synchronisation is a collective phenomenon that can occur in both dynamical classical and quantum systems.
We show that our analysis applies to a variety of spontaneously synchronising open quantum systems.
arXiv Detail & Related papers (2020-06-29T17:21:32Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.