Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous
- URL: http://arxiv.org/abs/2111.12141v2
- Date: Thu, 21 Apr 2022 15:09:27 GMT
- Title: Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous
- Authors: Bento Montenegro, Nadja K. Bernardes, and Fernando Parisio
- Abstract summary: The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
- Score: 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a kicked harmonic oscillator where the impulsive driving is
provided by stroboscopic measurements on an ancillary degree of freedom and not
by the canonical quantization of a time-dependent Hamiltonian. The ancila is
dynamically entangled with the oscillator position, while the background
Hamiltonian remains static. The dynamics of this system is determined in closed
analytical form, allowing for the evaluation of a properly defined Loschmidt
echo, ensemble averages, and phase-space portraits. As in the case of standard
Floquet systems we observe regimes with crystalline and quasicrystalline
structures in phase space, resonances, and evidences of chaotic behavior,
however, not originating from any classically chaotic system.
Related papers
- Gapless Floquet topology [40.2428948628001]
We study the existence of topological edge zero- and pi-modes despite the lack of bulk gaps in the quasienergy spectrum.
We numerically study the effect of interactions, which give a finite lifetime to the edge modes in the thermodynamic limit with the decay rate consistent with Fermi's Golden Rule.
arXiv Detail & Related papers (2024-11-04T19:05:28Z) - Theory of parametric resonance for discrete time crystals in fully-connected spin-cavity systems [0.0]
We pinpoint the conditions necessary for discrete time crystal formation in fully connected spin-cavity systems.
We elucidate the role of nonlinearity and dissipation by mapping the periodically driven open Dicke model onto effective linear and nonlinear oscillator models.
We analyze the effect of global symmetry breaking using the Lipkin-Meshkov-Glick model with tunable anisotropy.
arXiv Detail & Related papers (2024-02-06T05:53:21Z) - Anomalous Floquet Phases. A resonance phenomena [0.0]
Floquet topological phases emerge when systems are periodically driven out-of-equilibrium.
We show that resonances in Floquet phases can be accurately captured in analytical terms.
We also find a bulk-to-boundary correspondence between the number of edge states in finite systems.
arXiv Detail & Related papers (2023-12-11T19:00:13Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Prethermalization in periodically-driven nonreciprocal many-body spin
systems [0.0]
We analyze a new class of time-periodic nonreciprocal dynamics in interacting chaotic classical spin systems.
We find that the magnetization dynamics features a long-lived metastable plateau, whose duration is controlled by the fourth power of the drive frequency.
We extend the notion of prethermal dynamics, observed in the high-frequency limit of periodically-driven systems, to nonreciprocal systems.
arXiv Detail & Related papers (2022-08-18T18:00:15Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Chiral current in Floquet cavity-magnonics [0.0]
Floquet engineering can induce complex collective behaviour and interesting synthetic gauge-field in quantum systems.
We realize a chiral state-transfer in a cavity-magnonic system using a Floquet drive on frequencies of the magnon modes.
arXiv Detail & Related papers (2022-06-20T02:33:14Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Quantized Floquet topology with temporal noise [0.0]
We study the Floquet insulator, which exhibits topologically quantized chiral edge states similar to a Chern insulator.
We find that the quantized response, given by partially filling the fermionic system and measuring charge pumped per cycle, remains quantized up to finite noise amplitude.
This approach suggests an interpretation of the state of the system as a non-Hermitian Floquet topological phase.
arXiv Detail & Related papers (2020-06-18T17:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.