論文の概要: Tech Report: One-stage Lightweight Object Detectors
- arxiv url: http://arxiv.org/abs/2210.17151v1
- Date: Mon, 31 Oct 2022 09:02:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-01 18:55:39.641799
- Title: Tech Report: One-stage Lightweight Object Detectors
- Title(参考訳): Tech Report: 1段軽量物体検出器
- Authors: Deokki Hong
- Abstract要約: この研究は、mAPと遅延の点でよく機能するワンステージ軽量検出器を設計するためのものである。
GPUとCPUを対象とするベースラインモデルでは、ベースラインモデルのバックボーンネットワークにおけるメイン操作の代わりに、さまざまな操作が適用される。
- 参考スコア(独自算出の注目度): 0.38073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work is for designing one-stage lightweight detectors which perform well
in terms of mAP and latency. With baseline models each of which targets on GPU
and CPU respectively, various operations are applied instead of the main
operations in backbone networks of baseline models. In addition to experiments
about backbone networks and operations, several feature pyramid network (FPN)
architectures are investigated. Benchmarks and proposed detectors are analyzed
in terms of the number of parameters, Gflops, GPU latency, CPU latency and mAP,
on MS COCO dataset which is a benchmark dataset in object detection. This work
propose similar or better network architectures considering the trade-off
between accuracy and latency. For example, our proposed GPU-target backbone
network outperforms that of YOLOX-tiny which is selected as the benchmark by
1.43x in speed and 0.5 mAP in accuracy on NVIDIA GeForce RTX 2080 Ti GPU.
- Abstract(参考訳): この研究は、mAPと遅延の点でよく機能するワンステージ軽量検出器を設計するためのものである。
GPUとCPUを対象とするベースラインモデルでは、ベースラインモデルのバックボーンネットワークにおけるメイン操作の代わりに、さまざまな操作が適用される。
バックボーンネットワークと操作の実験に加えて,いくつかの特徴ピラミッドネットワーク(FPN)アーキテクチャについて検討した。
ベンチマークと提案された検出器は、オブジェクト検出のベンチマークデータセットであるMS COCOデータセット上で、パラメータ、Gflops、GPUレイテンシ、CPUレイテンシ、mAPの数で分析される。
この研究は、精度とレイテンシのトレードオフを考慮した、類似またはより良いネットワークアーキテクチャを提案する。
例えば、提案するgpuターゲットバックボーンネットワークは、nvidia geforce rtx 2080 ti gpuのベンチマークとして選択されたyolox-tinyを1.53倍の速度で0.5マップの精度で上回っている。
関連論文リスト
- MAPLE-Edge: A Runtime Latency Predictor for Edge Devices [80.01591186546793]
汎用ハードウェアの最先端遅延予測器であるMAPLEのエッジデバイス指向拡張であるMAPLE-Edgeを提案する。
MAPLEと比較して、MAPLE-Edgeはより小さなCPUパフォーマンスカウンタを使用して、ランタイムとターゲットデバイスプラットフォームを記述することができる。
また、共通ランタイムを共有するデバイスプール上でトレーニングを行うMAPLEとは異なり、MAPLE-Edgeは実行時に効果的に一般化できることを示す。
論文 参考訳(メタデータ) (2022-04-27T14:00:48Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDetフレームワークは、1.4GPU日でオブジェクト検出のための実用的なバックボーンとFPNアーキテクチャを検出できる。
本稿では,一方のエッジ上での候補演算の重みを共有し,それらを一つの畳み込みに集約することでカーネル再利用手法を提案する。
特に、発見されたアーキテクチャは最先端のオブジェクト検出NAS法を超越し、120 FPSで40.1 mAP、49.2 mAP、41.3 FPSをCOCOテストデブセットで達成している。
論文 参考訳(メタデータ) (2022-03-21T05:56:12Z) - Revisiting Efficient Object Detection Backbones from Zero-Shot Neural
Architecture Search [34.88658308647129]
オブジェクト検出モデルでは、検出バックボーンは全体の推論コストの半分以上を消費する。
この問題に対処する新しいゼロショットNAS法を提案する。
提案手法はZenDetと呼ばれ,ネットワークパラメータを訓練することなく,効率的な検出バックボーンを自動設計する。
論文 参考訳(メタデータ) (2021-11-26T07:18:52Z) - Accelerating Training and Inference of Graph Neural Networks with Fast
Sampling and Pipelining [58.10436813430554]
グラフニューラルネットワーク(GNN)のミニバッチトレーニングには、多くの計算とデータ移動が必要である。
我々は,分散マルチGPU環境において,近傍サンプリングを用いたミニバッチトレーニングを行うことを支持する。
本稿では,これらのボトルネックを緩和する一連の改良点について述べる。
また,サンプリングによる推論を支援する実験分析を行い,試験精度が実質的に損なわれていないことを示す。
論文 参考訳(メタデータ) (2021-10-16T02:41:35Z) - Pixel Difference Networks for Efficient Edge Detection [71.03915957914532]
本稿では,Pixel Difference Network (PiDiNet) という軽量かつ効率的なエッジ検出アーキテクチャを提案する。
BSDS500、NYUD、Multicueのデータセットに関する大規模な実験が、その効果を示すために提供されている。
0.1M未満のパラメータを持つPiDiNetのより高速なバージョンは、200FPSのアーティファクトで同等のパフォーマンスを達成できる。
論文 参考訳(メタデータ) (2021-08-16T10:42:59Z) - EEEA-Net: An Early Exit Evolutionary Neural Architecture Search [6.569256728493014]
限られた計算資源を持つオンデバイスプロセッサに適した畳み込みニューラルネットワーク(CNN)アーキテクチャの探索。
The Early Exit Population Initialisation (EE-PI) for Evolutionary Algorithm (EA)。
CIFAR-10は2.46%、CIFAR-100は15.02%、ImageNetデータセットは23.8%である。
論文 参考訳(メタデータ) (2021-08-13T10:23:19Z) - Oriented R-CNN for Object Detection [61.78746189807462]
本研究では、オブジェクト指向R-CNNと呼ばれる、効果的でシンプルなオブジェクト指向オブジェクト検出フレームワークを提案する。
第1段階では,高品質な指向型提案をほぼ無償で直接生成する指向型領域提案ネットワーク(指向RPN)を提案する。
第2段階は、R-CNNヘッダーで、興味のある領域(オブジェクト指向のRoI)を精製し、認識する。
論文 参考訳(メタデータ) (2021-08-12T12:47:43Z) - Single Object Tracking through a Fast and Effective Single-Multiple
Model Convolutional Neural Network [0.0]
最近の最先端の(SOTA)アプローチは、エリア内の他のオブジェクトとターゲットを区別するために重い構造を持つマッチングネットワークを取ることに基づいて提案されています。
本稿では,これまでのアプローチとは対照的に,一つのショットで物体の位置を識別できる特殊なアーキテクチャを提案する。
提示されたトラッカーは、1080tiで最大120 fps$の超高速で、挑戦的な状況でsomaと比較してパフォーマンスする。
論文 参考訳(メタデータ) (2021-03-28T11:02:14Z) - LETI: Latency Estimation Tool and Investigation of Neural Networks
inference on Mobile GPU [0.0]
本研究では,モバイルGPUのレイテンシ近似をデータおよびハードウェア固有の問題として検討する。
私たちは、さまざまなターゲットデバイスで大規模な実験を行うための便利な方法を提供する、オープンソースのツールを構築しています。
我々は、一般的なNAS-Benchmark 101データセットのサブセットに対するそのようなアプローチの適用性を実験的に実証した。
論文 参考訳(メタデータ) (2020-10-06T16:51:35Z) - MobileDets: Searching for Object Detection Architectures for Mobile
Accelerators [61.30355783955777]
逆ボトルネック層は、モバイルデバイス上の最先端のオブジェクト検出モデルにおいて、主要なビルディングブロックとなっている。
通常の畳み込みは、アクセラレーターにおけるオブジェクト検出の遅延精度トレードオフを高める強力なコンポーネントである。
我々は、モバイルアクセラレーター全体で最先端の成果を得られるオブジェクト検出モデル、MobileDetsのファミリーを得る。
論文 参考訳(メタデータ) (2020-04-30T00:21:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。