PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
- URL: http://arxiv.org/abs/2210.17159v2
- Date: Wed, 20 Mar 2024 02:21:23 GMT
- Title: PAGE: Prototype-Based Model-Level Explanations for Graph Neural Networks
- Authors: Yong-Min Shin, Sun-Woo Kim, Won-Yong Shin,
- Abstract summary: Prototype-bAsed GNN-Explainer (Page) is a novel model-level explanation method for graph classification.
Page discovers a common subgraph pattern by iteratively searching for high matching nodes.
Using six graph classification datasets, we demonstrate that PAGE qualitatively and quantitatively outperforms the state-of-the-art model-level explanation method.
- Score: 12.16789930553124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aside from graph neural networks (GNNs) attracting significant attention as a powerful framework revolutionizing graph representation learning, there has been an increasing demand for explaining GNN models. Although various explanation methods for GNNs have been developed, most studies have focused on instance-level explanations, which produce explanations tailored to a given graph instance. In our study, we propose Prototype-bAsed GNN-Explainer (PAGE), a novel model-level GNN explanation method that explains what the underlying GNN model has learned for graph classification by discovering human-interpretable prototype graphs. Our method produces explanations for a given class, thus being capable of offering more concise and comprehensive explanations than those of instance-level explanations. First, PAGE selects embeddings of class-discriminative input graphs on the graph-level embedding space after clustering them. Then, PAGE discovers a common subgraph pattern by iteratively searching for high matching node tuples using node-level embeddings via a prototype scoring function, thereby yielding a prototype graph as our explanation. Using six graph classification datasets, we demonstrate that PAGE qualitatively and quantitatively outperforms the state-of-the-art model-level explanation method. We also carry out systematic experimental studies by demonstrating the relationship between PAGE and instance-level explanation methods, the robustness of PAGE to input data scarce environments, and the computational efficiency of the proposed prototype scoring function in PAGE.
Related papers
- View-based Explanations for Graph Neural Networks [27.19300566616961]
We propose GVEX, a novel paradigm that generates Graph Views for EXplanation.
We show that this strategy provides an approximation ratio of 1/2.
Our second algorithm performs a single-pass to an input node stream in batches to incrementally maintain explanation views.
arXiv Detail & Related papers (2024-01-04T06:20:24Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - MotifExplainer: a Motif-based Graph Neural Network Explainer [19.64574177805823]
We propose a novel method to explain Graph Neural Networks (GNNs) by identifying important motifs, recurrent and statistically significant patterns in graphs.
Our proposed motif-based methods can provide better human-understandable explanations than methods based on nodes, edges, and regular subgraphs.
arXiv Detail & Related papers (2022-02-01T16:11:21Z) - A Meta-Learning Approach for Training Explainable Graph Neural Networks [10.11960004698409]
We propose a meta-learning framework for improving the level of explainability of a GNN directly at training time.
Our framework jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms.
Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process.
arXiv Detail & Related papers (2021-09-20T11:09:10Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - On Explainability of Graph Neural Networks via Subgraph Explorations [48.56936527708657]
We propose a novel method, known as SubgraphX, to explain graph neural networks (GNNs)
Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly.
arXiv Detail & Related papers (2021-02-09T22:12:26Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - GraphLIME: Local Interpretable Model Explanations for Graph Neural
Networks [45.824642013383944]
Graph neural networks (GNN) were shown to be successful in effectively representing graph structured data.
We propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso.
arXiv Detail & Related papers (2020-01-17T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.