GIN-Graph: A Generative Interpretation Network for Model-Level Explanation of Graph Neural Networks
- URL: http://arxiv.org/abs/2503.06352v1
- Date: Sat, 08 Mar 2025 22:39:36 GMT
- Title: GIN-Graph: A Generative Interpretation Network for Model-Level Explanation of Graph Neural Networks
- Authors: Xiao Yue, Guangzhi Qu, Lige Gan,
- Abstract summary: We propose a new Generative Interpretation Network for Model-Level Explanation of Graph Neural Networks (GIN-Graph) to generate reliable model-level explanation graphs.<n>GIN-Graph can be easily applied to GNN models trained on a variety of graph datasets to create meaningful explanation graphs.
- Score: 0.40964539027092917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One significant challenge of exploiting Graph neural networks (GNNs) in real-life scenarios is that they are always treated as black boxes, therefore leading to the requirement of interpretability. Model-level interpretations explain what patterns maximize probability of predicting to a certain class. However, existing model-level interpretation methods pose several limitations such as generating invalid explanation graphs and requiring extreme fine-tuning on hyperparameters manually. In this paper, we propose a new Generative Interpretation Network for Model-Level Explanation of Graph Neural Networks (GIN-Graph), to generate reliable model-level explanation graphs. The implicit and likelihood-free generative adversarial networks are exploited to construct explanation graphs similar to original graphs, meanwhile maximizing the prediction probability for a certain class by adopting a novel objective function. Experimental results indicate that GIN-Graph can be easily applied to GNN models trained on a variety of graph datasets to create meaningful explanation graphs without requiring extensive fine-tuning on hyperparameters.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)<n>This framework provides a standardized setting to evaluate GNNs across diverse datasets.<n>We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
arXiv Detail & Related papers (2022-09-15T07:45:35Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - Implicit Graph Neural Networks [46.0589136729616]
We propose a graph learning framework called Implicit Graph Neural Networks (IGNN)
IGNNs consistently capture long-range dependencies and outperform state-of-the-art GNN models.
arXiv Detail & Related papers (2020-09-14T06:04:55Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - GraphLIME: Local Interpretable Model Explanations for Graph Neural
Networks [45.824642013383944]
Graph neural networks (GNN) were shown to be successful in effectively representing graph structured data.
We propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso.
arXiv Detail & Related papers (2020-01-17T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.