VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values
- URL: http://arxiv.org/abs/2210.17228v2
- Date: Tue, 21 May 2024 14:12:20 GMT
- Title: VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values
- Authors: Florian van Daalen, Lianne Ippel, Andre Dekker, Inigo Bermejo,
- Abstract summary: Federated learning makes it possible to train a machine learning model on decentralized data.
We propose a novel method called VertiBayes to train Bayesian networks on vertically partitioned data.
We experimentally show our approach produces models comparable to those learnt using traditional algorithms.
- Score: 2.9707233220536313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning makes it possible to train a machine learning model on decentralized data. Bayesian networks are probabilistic graphical models that have been widely used in artificial intelligence applications. Their popularity stems from the fact they can be built by combining existing expert knowledge with data and are highly interpretable, which makes them useful for decision support, e.g. in healthcare. While some research has been published on the federated learning of Bayesian networks, publications on Bayesian networks in a vertically partitioned or heterogeneous data setting (where different variables are located in different datasets) are limited, and suffer from important omissions, such as the handling of missing data. In this article, we propose a novel method called VertiBayes to train Bayesian networks (structure and parameters) on vertically partitioned data, which can handle missing values as well as an arbitrary number of parties. For structure learning we adapted the widely used K2 algorithm with a privacy-preserving scalar product protocol. For parameter learning, we use a two-step approach: first, we learn an intermediate model using maximum likelihood by treating missing values as a special value and then we train a model on synthetic data generated by the intermediate model using the EM algorithm. The privacy guarantees of our approach are equivalent to the ones provided by the privacy preserving scalar product protocol used. We experimentally show our approach produces models comparable to those learnt using traditional algorithms and we estimate the increase in complexity in terms of samples, network size, and complexity. Finally, we propose two alternative approaches to estimate the performance of the model using vertically partitioned data and we show in experiments that they lead to reasonably accurate estimates.
Related papers
- HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Towards Federated Bayesian Network Structure Learning with Continuous
Optimization [14.779035801521717]
We present a cross-silo federated learning approach to estimate the structure of Bayesian network.
We develop a distributed structure learning method based on continuous optimization.
arXiv Detail & Related papers (2021-10-18T14:36:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Privacy-Preserving Object Detection & Localization Using Distributed
Machine Learning: A Case Study of Infant Eyeblink Conditioning [1.3022864665437273]
We explore scalable distributed-training versions of two algorithms commonly used in object detection.
The application of both algorithms in the medical field is examined using a paradigm from the fields of psychology and neuroscience.
arXiv Detail & Related papers (2020-10-14T17:33:28Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
Preparation of training data is often a bottleneck in the lifecycle of deploying a deep learning model for production or research.
This paper proposes an end-to-end process of searching related models for serving based on the similarity of the target dataset and the training datasets of the available models.
arXiv Detail & Related papers (2020-10-13T22:52:13Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
spectral-based subspace learning is a common data preprocessing step in many machine learning pipelines.
Most subspace learning methods do not take into consideration possible measurement inaccuracies or artifacts that can lead to data with high uncertainty.
arXiv Detail & Related papers (2020-09-01T15:08:23Z) - GRAFFL: Gradient-free Federated Learning of a Bayesian Generative Model [8.87104231451079]
This paper presents the first gradient-free federated learning framework called GRAFFL.
It uses implicit information derived from each participating institution to learn posterior distributions of parameters.
We propose the GRAFFL-based Bayesian mixture model to serve as a proof-of-concept of the framework.
arXiv Detail & Related papers (2020-08-29T07:19:44Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - A Tutorial on Learning With Bayesian Networks [8.98526174345299]
A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest.
A Bayesian network can be used to learn causal relationships.
It can also be used to gain understanding about a problem domain and to predict the consequences of intervention.
arXiv Detail & Related papers (2020-02-01T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.