It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing
- URL: http://arxiv.org/abs/2010.09474v1
- Date: Tue, 13 Oct 2020 22:52:13 GMT
- Title: It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing
- Authors: Lixi Zhou, Zijie Wang, Amitabh Das, Jia Zou
- Abstract summary: Preparation of training data is often a bottleneck in the lifecycle of deploying a deep learning model for production or research.
This paper proposes an end-to-end process of searching related models for serving based on the similarity of the target dataset and the training datasets of the available models.
- Score: 1.581913948762905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent, deep learning has become the most popular direction in machine
learning and artificial intelligence. However, preparation of training data is
often a bottleneck in the lifecycle of deploying a deep learning model for
production or research. Reusing models for inferencing a dataset can greatly
save the human costs required for training data creation. Although there exist
a number of model sharing platform such as TensorFlow Hub, PyTorch Hub, DLHub,
most of these systems require model uploaders to manually specify the details
of each model and model downloaders to screen keyword search results for
selecting a model. They are in lack of an automatic model searching tool. This
paper proposes an end-to-end process of searching related models for serving
based on the similarity of the target dataset and the training datasets of the
available models. While there exist many similarity measurements, we study how
to efficiently apply these metrics without pair-wise comparison and compare the
effectiveness of these metrics. We find that our proposed adaptivity
measurement which is based on Jensen-Shannon (JS) divergence, is an effective
measurement, and its computation can be significantly accelerated by using the
technique of locality sensitive hashing.
Related papers
- Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
We propose a two-phase (coarse-recall and fine-selection) model selection framework.
It aims to enhance the efficiency of selecting a robust model by leveraging the models' training performances on benchmark datasets.
It has been demonstrated that the proposed methodology facilitates the selection of a high-performing model at a rate about 3x times faster than conventional baseline methods.
arXiv Detail & Related papers (2024-03-28T14:44:44Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values [2.9707233220536313]
Federated learning makes it possible to train a machine learning model on decentralized data.
We propose a novel method called VertiBayes to train Bayesian networks on vertically partitioned data.
We experimentally show our approach produces models comparable to those learnt using traditional algorithms.
arXiv Detail & Related papers (2022-10-31T11:13:35Z) - Revealing Secrets From Pre-trained Models [2.0249686991196123]
Transfer-learning has been widely adopted in many emerging deep learning algorithms.
We show that pre-trained models and fine-tuned models have significantly high similarities in weight values.
We propose a new model extraction attack that reveals the model architecture and the pre-trained model used by the black-box victim model.
arXiv Detail & Related papers (2022-07-19T20:19:03Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.