Floquet's Refrigerator: Conformal Cooling in Driven Quantum Critical
Systems
- URL: http://arxiv.org/abs/2211.00040v1
- Date: Mon, 31 Oct 2022 18:00:10 GMT
- Title: Floquet's Refrigerator: Conformal Cooling in Driven Quantum Critical
Systems
- Authors: Xueda Wen, Ruihua Fan, Ashvin Vishwanath
- Abstract summary: We propose a general method of cooling, periodic driving generated by spatially deformed Hamiltonians.
We study it in general one-dimensional quantum critical systems described by a conformal field theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general method of cooling -- periodic driving generated by
spatially deformed Hamiltonians -- and study it in general one-dimensional
quantum critical systems described by a conformal field theory. Our protocol is
able to efficiently cool a finite-temperature Gibbs (mixed) state down to zero
temperature at prescribed sub-regions exponentially rapidly in Floquet time
cycles. At the same time, entropy and energy are transferred and localized to
the complementary regions that shrink with time. We derive these conclusions
through an exact analytic solution of the full time evolution of reduced
density matrices. We also use numerics in free-fermion lattice models as a
benchmark and find remarkable agreement. Such conformal Floquet refrigerators
open a promising new route to cooling synthetic quantum systems.
Related papers
- Finite-temperature Rydberg arrays: quantum phases and entanglement characterization [0.0]
We develop a network-based numerical toolbox for constructing the quantum many-body states at thermal equilibrium.
We numerically confirm that a conformal scaling law of entanglement extends from the zero-temperature critical points into the low-temperature regime.
arXiv Detail & Related papers (2024-05-28T18:00:03Z) - Quantum stochastic thermodynamics in the mesoscopic-leads formulation [0.0]
We introduce a numerical method to sample the distributions of charge, heat, and entropy production in open quantum systems.
Our method exploits the mesoscopic-leads formulation, where macroscopic reservoirs are modeled by a finite collection of modes.
arXiv Detail & Related papers (2024-04-09T16:17:48Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Emergent strong zero mode through local Floquet engineering [0.0]
Floquet prethermalization and dynamical freezing of certain observables are realized by controlling the drive frequency.
These dynamical regimes can be leveraged to construct quantum memories and have potential applications in quantum information processing.
arXiv Detail & Related papers (2023-06-02T18:00:03Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Renormalization group for open quantum systems using environment
temperature as flow parameter [0.0]
We present the $T$-flow renormalization group method, which computes the memory kernel for the density-operator evolution of an open quantum system.
We benchmark in the stationary limit, readily accessible in real-time for voltages on the order of the coupling or larger.
We analytically show that the short-time dynamics of both local and non-local observables follow a universal temperature-independent behaviour.
arXiv Detail & Related papers (2021-11-14T11:52:27Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Algorithmic Cooling of Nuclear Spin Pairs using a Long-Lived Singlet
State [48.7576911714538]
We show that significant cooling is achieved on an ensemble of spin-pair systems by exploiting the long-lived nuclear singlet state.
This is the first demonstration of algorithmic cooling using a quantum superposition state.
arXiv Detail & Related papers (2019-12-31T09:57:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.