論文の概要: Zero Day Threat Detection Using Metric Learning Autoencoders
- arxiv url: http://arxiv.org/abs/2211.00441v1
- Date: Tue, 1 Nov 2022 13:12:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 13:44:46.033889
- Title: Zero Day Threat Detection Using Metric Learning Autoencoders
- Title(参考訳): メトリック学習オートエンコーダを用いたゼロデイ脅威検出
- Authors: Dhruv Nandakumar, Robert Schiller, Christopher Redino, Kevin Choi,
Abdul Rahman, Edward Bowen, Marc Vucovich, Joe Nehila, Matthew Weeks, Aaron
Shaha
- Abstract要約: 企業ネットワークへのゼロデイ脅威(ZDT)の拡散は、非常にコストがかかる。
ディープラーニング手法は、高度に非線形な振る舞いパターンをキャプチャする能力にとって魅力的な選択肢である。
ここで提示されるモデルは、さらに2つのデータセットでトレーニングされ、評価され、新しいネットワークトポロジに一般化しても、有望な結果を示し続ける。
- 参考スコア(独自算出の注目度): 3.1965908200266173
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of zero-day threats (ZDTs) to companies' networks has been
immensely costly and requires novel methods to scan traffic for malicious
behavior at massive scale. The diverse nature of normal behavior along with the
huge landscape of attack types makes deep learning methods an attractive option
for their ability to capture highly-nonlinear behavior patterns. In this paper,
the authors demonstrate an improvement upon a previously introduced
methodology, which used a dual-autoencoder approach to identify ZDTs in network
flow telemetry. In addition to the previously-introduced asset-level graph
features, which help abstractly represent the role of a host in its network,
this new model uses metric learning to train the second autoencoder on labeled
attack data. This not only produces stronger performance, but it has the added
advantage of improving the interpretability of the model by allowing for
multiclass classification in the latent space. This can potentially save human
threat hunters time when they investigate predicted ZDTs by showing them which
known attack classes were nearby in the latent space. The models presented here
are also trained and evaluated with two more datasets, and continue to show
promising results even when generalizing to new network topologies.
- Abstract(参考訳): 企業ネットワークへのゼロデイ脅威(ZDT)の拡散は、非常にコストがかかり、大規模に悪意のある行動のためにトラフィックをスキャンする新しい方法が必要である。
通常の行動の多様さと、攻撃型の巨大な景観は、ディープラーニング手法を高非線形な行動パターンを捉えるための魅力的な選択肢にします。
本稿では,ネットワークフローテレメトリにおけるZDTの識別にデュアル・オートエンコーダ・アプローチを用いた従来手法の改良について述べる。
ネットワーク内のホストの役割を抽象的に表現する,これまで導入されたアセットレベルのグラフ機能に加えて,この新モデルは,2番目のオートエンコーダをラベル付きアタックデータでトレーニングするために,メトリック学習を使用する。
これにより性能が向上するだけでなく、潜在空間におけるマルチクラス分類を可能にすることにより、モデルの解釈可能性を改善するという利点もある。
これは、予測されたZDTを調査する際に、潜伏空間のどの既知の攻撃クラスが近くにあるかを示すことで、人間の脅威ハンターの時間を節約できる可能性がある。
ここで提示されるモデルは、さらに2つのデータセットでトレーニングされ、評価され、新しいネットワークトポロジに一般化しても有望な結果を示し続ける。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
本稿では,ネットワークアクティベーションに適用した2つのテンソル分解法によるバックドア検出手法を提案する。
これは、複数のモデルを同時に分析する機能など、既存の検出方法と比較して、多くの利点がある。
その結果,現在の最先端手法よりも,バックドアネットワークを高精度かつ効率的に検出できることがわかった。
論文 参考訳(メタデータ) (2024-01-06T03:08:28Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
本稿では,GABAttackを提案する。GABAttackは,ネットワークトラフィック分類のためのフェデレーション学習に対する新しい遺伝的アルゴリズムに基づくバックドア攻撃である。
この研究は、ネットワークセキュリティの専門家や実践者がこのような攻撃に対して堅牢な防御策を開発するための警告となる。
論文 参考訳(メタデータ) (2023-09-27T14:02:02Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Zero Day Threat Detection Using Graph and Flow Based Security Telemetry [3.3029515721630855]
Zero Day Threats (ZDT) は、悪意あるアクターが情報技術(IT)ネットワークやインフラを攻撃・利用するための新しい手法である。
本稿では,ゼロデイ脅威検出に対するディープラーニングに基づくアプローチを導入し,リアルタイムに脅威を一般化し,スケールし,効果的に識別する。
論文 参考訳(メタデータ) (2022-05-04T19:30:48Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Cassandra: Detecting Trojaned Networks from Adversarial Perturbations [92.43879594465422]
多くの場合、事前トレーニングされたモデルは、トロイの木馬の振る舞いをモデルに挿入するためにトレーニングパイプラインを中断したかもしれないベンダーから派生している。
本稿では,事前学習したモデルがトロイの木馬か良馬かを検証する手法を提案する。
本手法は,ニューラルネットワークの指紋を,ネットワーク勾配から学習した逆方向の摂動の形でキャプチャする。
論文 参考訳(メタデータ) (2020-07-28T19:00:40Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。