論文の概要: Amplifying Membership Exposure via Data Poisoning
- arxiv url: http://arxiv.org/abs/2211.00463v1
- Date: Tue, 1 Nov 2022 13:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 14:28:13.039597
- Title: Amplifying Membership Exposure via Data Poisoning
- Title(参考訳): データ中毒によるメンバーシップ露出の増幅
- Authors: Yufei Chen, Chao Shen, Yun Shen, Cong Wang, Yang Zhang
- Abstract要約: 本稿では,データ中毒の第3タイプについて検討し,良心的トレーニングサンプルのプライバシー漏洩リスクを高めることを目的とした。
そこで本研究では,対象クラスの加入者への露出を増幅するために,データ中毒攻撃のセットを提案する。
この結果から,提案手法は,テスト時間モデルの性能劣化を最小限に抑えることで,メンバーシップ推定精度を大幅に向上させることができることがわかった。
- 参考スコア(独自算出の注目度): 18.799570863203858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As in-the-wild data are increasingly involved in the training stage, machine
learning applications become more susceptible to data poisoning attacks. Such
attacks typically lead to test-time accuracy degradation or controlled
misprediction. In this paper, we investigate the third type of exploitation of
data poisoning - increasing the risks of privacy leakage of benign training
samples. To this end, we demonstrate a set of data poisoning attacks to amplify
the membership exposure of the targeted class. We first propose a generic
dirty-label attack for supervised classification algorithms. We then propose an
optimization-based clean-label attack in the transfer learning scenario,
whereby the poisoning samples are correctly labeled and look "natural" to evade
human moderation. We extensively evaluate our attacks on computer vision
benchmarks. Our results show that the proposed attacks can substantially
increase the membership inference precision with minimum overall test-time
model performance degradation. To mitigate the potential negative impacts of
our attacks, we also investigate feasible countermeasures.
- Abstract(参考訳): 現場のデータがトレーニングの段階にますます関与しているため、機械学習アプリケーションはデータ中毒攻撃の影響を受けやすくなっている。
このような攻撃は典型的にはテスト時の精度低下や制御ミス予測につながる。
本稿では,良性トレーニングサンプルのプライバシ漏洩リスクを増大させるデータ中毒の第3の手法について検討する。
この目的を達成するために, 対象クラスの会員の露出を増幅する一連のデータ中毒攻撃を実演する。
まず,教師付き分類アルゴリズムに対する汎用的ダーティラベル攻撃を提案する。
次に, 投与サンプルを正しくラベル付けし, 人間のモデレーションを回避するために「自然」に見せかけるトランスファー学習シナリオにおいて, 最適化に基づくクリーンラベル攻撃を提案する。
我々はコンピュータビジョンベンチマークに対する攻撃を広範囲に評価する。
提案手法は, テスト時間モデルの性能低下を最小限に抑えることで, メンバシップ推定精度を大幅に向上できることを示す。
攻撃の潜在的なネガティブな影響を軽減するため、本研究は可能な対策も検討する。
関連論文リスト
- Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors [26.36344184385407]
本稿では,事前訓練した特徴抽出器を応用した下流タスクに対する無差別攻撃の脅威について検討する。
入力空間攻撃とは,(1)既存の攻撃を修正して入力空間に有毒なデータを作る攻撃と,(2)学習した特徴表現をデータセットとして扱うことで有毒な特徴を見つける攻撃である。
実験では、同じデータセット上の微調整やドメイン適応を考慮した転帰学習など、下流の一般的なタスクにおける攻撃について検討した。
論文 参考訳(メタデータ) (2024-02-20T01:12:59Z) - PACOL: Poisoning Attacks Against Continual Learners [1.569413950416037]
本研究では,悪意ある誤報によって連続学習システムを操作できることを実証する。
本稿では,連続学習者を対象としたデータ中毒攻撃の新たなカテゴリについて紹介する。
総合的な実験のセットは、一般的に使われている生成的リプレイと正規化に基づく攻撃方法に対する継続的な学習アプローチの脆弱性を示している。
論文 参考訳(メタデータ) (2023-11-18T00:20:57Z) - Transferable Availability Poisoning Attacks [23.241524904589326]
我々は、機械学習モデルの総合的なテスト精度を低下させることを目的とした、アベイラビリティーデータ中毒攻撃について検討する。
既存の毒殺対策は攻撃目標を達成することができるが、被害者は敵が攻撃をマウントするために使用するものと同じ学習方法を採用すると仮定する。
本稿では,まずアライメントと均一性の本質的な特性を活用して,非学習性を向上するTransferable Poisoningを提案する。
論文 参考訳(メタデータ) (2023-10-08T12:22:50Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Accumulative Poisoning Attacks on Real-time Data [56.96241557830253]
我々は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを示します。
我々の研究は、よく設計されたが簡単な攻撃戦略が、中毒効果を劇的に増幅できることを検証する。
論文 参考訳(メタデータ) (2021-06-18T08:29:53Z) - Learning and Certification under Instance-targeted Poisoning [49.55596073963654]
インスタンスターゲット中毒攻撃におけるPAC学習性と認証について検討する。
敵の予算がサンプルの複雑さに比例してスケールすると、PACの学習性と認定が達成可能であることを示す。
実データセット上でのK近傍, ロジスティック回帰, 多層パーセプトロン, 畳み込みニューラルネットワークの堅牢性を実証的に検討する。
論文 参考訳(メタデータ) (2021-05-18T17:48:15Z) - Defening against Adversarial Denial-of-Service Attacks [0.0]
データ中毒は、機械学習とデータ駆動技術に対する最も関連するセキュリティ脅威の1つです。
我々は,dos有毒なインスタンスを検出する新しい手法を提案する。
2つのdos毒殺攻撃と7つのデータセットに対する我々の防御を評価し、毒殺事例を確実に特定できることを確認します。
論文 参考訳(メタデータ) (2021-04-14T09:52:36Z) - Property Inference From Poisoning [15.105224455937025]
プロパティ推論攻撃は、トレーニングされたモデルにアクセスでき、トレーニングデータのグローバルな統計を抽出しようとする敵を考える。
本研究では,モデルの情報漏洩を増大させることが目的とする中毒攻撃について検討する。
以上より,毒殺攻撃は情報漏洩を著しく促進し,敏感なアプリケーションにおいてより強力な脅威モデルと見なされるべきであることが示唆された。
論文 参考訳(メタデータ) (2021-01-26T20:35:28Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。