論文の概要: Revisiting Heterophily in Graph Convolution Networks by Learning
Representations Across Topological and Feature Spaces
- arxiv url: http://arxiv.org/abs/2211.00565v2
- Date: Wed, 2 Nov 2022 06:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 11:49:49.142452
- Title: Revisiting Heterophily in Graph Convolution Networks by Learning
Representations Across Topological and Feature Spaces
- Title(参考訳): トポロジと特徴空間全体にわたる表現の学習によるグラフ畳み込みネットワークにおけるヘテロフィア再考
- Authors: Ashish Tiwari, Sresth Tosniwal, and Shanmuganathan Raman
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、グラフベースの機械学習タスクにおける表現の学習において、非常に成功した。
グラフ表現を2つの空間、すなわち位相空間と特徴空間で学習することで、GCNはヘテロフィリーに対処できると主張する。
半教師付きノード分類タスクにおけるGCNフレームワークの性能を実験的に検証した。
- 参考スコア(独自算出の注目度): 20.775165967590173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolution networks (GCNs) have been enormously successful in learning
representations over several graph-based machine learning tasks. Specific to
learning rich node representations, most of the methods have solely relied on
the homophily assumption and have shown limited performance on the
heterophilous graphs. While several methods have been developed with new
architectures to address heterophily, we argue that by learning graph
representations across two spaces i.e., topology and feature space GCNs can
address heterophily. In this work, we experimentally demonstrate the
performance of the proposed GCN framework over semi-supervised node
classification task on both homophilous and heterophilous graph benchmarks by
learning and combining representations across the topological and the feature
spaces.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフベースの機械学習タスクにおける表現の学習において、非常に成功した。
リッチノード表現の学習に特有な手法は、ほとんどがホモフィリー仮定のみに依存しており、ヘテロフィラスグラフの性能は限られている。
ヘテロフィリーに対処する新しいアーキテクチャでいくつかの手法が開発されているが、トポロジーと特徴空間GCNという2つの空間にまたがるグラフ表現を学習することでヘテロフィリーに対処できると主張している。
本研究では,同種および異種グラフベンチマークを用いた半教師付きノード分類タスクにおけるGCNフレームワークの性能を,トポロジと特徴空間をまたいだ表現の学習と組み合わせにより実験的に実証した。
関連論文リスト
- Refining Latent Homophilic Structures over Heterophilic Graphs for
Robust Graph Convolution Networks [23.61142321685077]
グラフ畳み込みネットワーク(GCN)は、空間データから知識を抽出するために様々なグラフタスクで広く利用されている。
本研究は,ノード分類のための全表現不均一グラフ上のGCNロバスト性について定量的に検討する先駆的な試みである。
ヘテロ親和性グラフ上の潜在ホモ親和性構造を自動的に学習し,GCNを硬化させる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-27T05:35:14Z) - Hierarchical Topology Isomorphism Expertise Embedded Graph Contrastive
Learning [37.0788516033498]
本稿では,新しい階層型トポロジアイソモーフィズムの専門知識をグラフに組み込んだコントラスト学習を提案する。
我々は,提案手法が複数の最先端GCLモデルに対して普遍的であることを実証的に実証した。
本手法は、教師なし表現学習環境において、最先端の手法を0.23%上回る。
論文 参考訳(メタデータ) (2023-12-21T14:07:46Z) - Semantic Random Walk for Graph Representation Learning in Attributed
Graphs [2.318473106845779]
本稿では,2つの異種ソースの結合最適化を高次近接ベースフレームワークに定式化するための新しい意味グラフ表現(SGR)法を提案する。
高次トポロジ確率を考慮した従来の埋め込み法は、新しく構築されたグラフに容易に適用でき、ノードと属性の両方の表現を学習することができる。
学習された属性の埋め込みは、セマンティック指向の推論タスクを効果的にサポートし、グラフの深いセマンティックを明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-05-11T02:35:16Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
本稿では,幾何学コントラスト学習(Geometry Contrastive Learning, GCL)と呼ばれる,新しい自己指導型学習手法を提案する。
GCLはユークリッドと双曲的な視点からヘテロジニアスグラフを同時に見ることができ、リッチな意味論と複雑な構造をモデル化する能力の強い融合を目指している。
4つのベンチマークデータセットの大規模な実験は、提案手法が強いベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Geometric Graph Representation Learning via Maximizing Rate Reduction [73.6044873825311]
学習ノード表現は、コミュニティ検出やノード分類などのグラフ解析において、さまざまな下流タスクの恩恵を受ける。
教師なしの方法でノード表現を学習するための幾何学グラフ表現学習(G2R)を提案する。
G2R は異なるグループ内のノードを異なる部分空間にマッピングし、各部分空間はコンパクトで異なる部分空間が分散される。
論文 参考訳(メタデータ) (2022-02-13T07:46:24Z) - Heterogeneous Graph Neural Network with Multi-view Representation
Learning [16.31723570596291]
異種グラフ埋め込みのための多視点表現学習(MV-HetGNN)を用いた異種グラフニューラルネットワークを提案する。
提案手法は, ノード特徴変換, ビュー固有エゴグラフ符号化, 自動多視点融合により, 包括的ノード表現を生成する複雑な構造情報と意味情報を完全に学習する。
3つの実世界の異種グラフデータセットに対する大規模な実験により、提案されたMV-HetGNNモデルは、様々な下流タスクにおいて、最先端のGNNベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2021-08-31T07:18:48Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
グラフニューラルネットワーク(GNN)は、多数のグラフベースの機械学習タスクに適した学習表現において大きな進歩を見せている。
GNNはホモフィリーな仮定によりうまく機能し、異種ノードが接続する異種グラフへの一般化に失敗したと広く信じられている。
最近の研究は、このような不均一な制限を克服する新しいアーキテクチャを設計し、ベースライン性能の低さと、この概念の証拠として、いくつかの異種グラフベンチマークデータセットに対するアーキテクチャの改善を引用している。
我々の実験では、標準グラフ畳み込みネットワーク(GCN)が実際よりも優れた性能を実現できることを実証的に見出した。
論文 参考訳(メタデータ) (2021-06-11T02:44:00Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。