Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution
- URL: http://arxiv.org/abs/2211.00577v9
- Date: Fri, 22 Nov 2024 14:01:43 GMT
- Title: Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution
- Authors: Alireza Aghelan, Modjtaba Rouhani,
- Abstract summary: Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images.
We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations.
The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
- Score: 2.647302105102753
- License:
- Abstract: In the field of medical image analysis, there is a substantial need for high-resolution (HR) images to improve diagnostic accuracy. However, it is a challenging task to obtain HR medical images, as it requires advanced instruments and significant time. Deep learning-based super-resolution methods can help to improve the resolution and perceptual quality of low-resolution (LR) medical images. Recently, Generative Adversarial Network (GAN) based methods have shown remarkable performance among deep learning-based super-resolution methods. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images. In our proposed approach, we use transfer learning technique and fine-tune the pre-trained Real-ESRGAN model using medical image datasets. This technique helps in improving the performance of the model. We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations. This adaptation allows for generating more realistic degraded medical images, resulting in improved performance. The focus of this paper is on enhancing the resolution and perceptual quality of chest X-ray and retinal images. We use the Tuberculosis chest X-ray (Shenzhen) dataset and the STARE dataset of retinal images for fine-tuning the model. The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Iterative-in-Iterative Super-Resolution Biomedical Imaging Using One
Real Image [8.412910029745762]
We propose an approach to train the deep learning-based super-resolution models using only one real image.
We employ a mixed metric of image screening to automatically select images with a distribution similar to ground truth.
After five training iterations, the proposed deep learning-based super-resolution model experienced a 7.5% and 5.49% improvement in structural similarity and peak-signal-to-noise ratio.
arXiv Detail & Related papers (2023-06-26T07:57:03Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Flow-based Visual Quality Enhancer for Super-resolution Magnetic
Resonance Spectroscopic Imaging [13.408365072149795]
We propose a flow-based enhancer network to improve the visual quality of super-resolution MRSI.
Our enhancer network incorporates anatomical information from additional image modalities (MRI) and uses a learnable base distribution.
Our method also allows visual quality adjustment and uncertainty estimation.
arXiv Detail & Related papers (2022-07-20T20:19:44Z) - Single MR Image Super-Resolution using Generative Adversarial Network [0.696125353550498]
Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
arXiv Detail & Related papers (2022-07-16T23:15:10Z) - Data Augmentation For Medical MR Image Using Generative Adversarial
Networks [10.525550396457586]
This work improves Progressive Growing of GANs with a structural similarity loss function (PGGAN-SSIM) to solve image blurriness problems and model collapse.
Our results show that PGGAN-SSIM successfully generates 256x256 realistic brain tumor MR images which fill the real image distribution uncovered by the original dataset.
arXiv Detail & Related papers (2021-11-29T01:59:50Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - LASSR: Effective Super-Resolution Method for Plant Disease Diagnosis [2.449909275410288]
Leaf Artifact-Suppression Super Resolution (LASSR) is specifically designed for diagnosing leaf disease.
LASSR can generate much more pleasing, high-quality images compared to the state-of-the-art ESRGAN model.
arXiv Detail & Related papers (2020-10-12T02:33:49Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.