Single MR Image Super-Resolution using Generative Adversarial Network
- URL: http://arxiv.org/abs/2207.08036v1
- Date: Sat, 16 Jul 2022 23:15:10 GMT
- Title: Single MR Image Super-Resolution using Generative Adversarial Network
- Authors: Shawkh Ibne Rashid, Elham Shakibapour, Mehran Ebrahimi
- Abstract summary: Real Enhanced Super Resolution Generative Adrial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images.
In this paper, we apply this method to enhance the spatial resolution of 2D MR images.
- Score: 0.696125353550498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spatial resolution of medical images can be improved using super-resolution
methods. Real Enhanced Super Resolution Generative Adversarial Network
(Real-ESRGAN) is one of the recent effective approaches utilized to produce
higher resolution images, given input images of lower resolution. In this
paper, we apply this method to enhance the spatial resolution of 2D MR images.
In our proposed approach, we slightly modify the structure of the Real-ESRGAN
to train 2D Magnetic Resonance images (MRI) taken from the Brain Tumor
Segmentation Challenge (BraTS) 2018 dataset. The obtained results are validated
qualitatively and quantitatively by computing SSIM (Structural Similarity Index
Measure), NRMSE (Normalized Root Mean Square Error), MAE (Mean Absolute Error),
and VIF (Visual Information Fidelity) values.
Related papers
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Resolution- and Stimulus-agnostic Super-Resolution of Ultra-High-Field Functional MRI: Application to Visual Studies [1.8327547104097965]
High-resolution fMRI provides a window into the brain's mesoscale organization.
Yet, higher spatial resolution increases scan times, to compensate for the low signal and contrast-to-noise ratio.
This work introduces a deep learning-based 3D super-resolution (SR) method for fMRI.
arXiv Detail & Related papers (2023-11-25T03:33:36Z) - Dual Arbitrary Scale Super-Resolution for Multi-Contrast MRI [23.50915512118989]
Multi-contrast Super-Resolution (SR) reconstruction is promising to yield SR images with higher quality.
radiologists are accustomed to zooming the MR images at arbitrary scales rather than using a fixed scale.
We propose an implicit neural representations based dual-arbitrary multi-contrast MRI super-resolution method, called Dual-ArbNet.
arXiv Detail & Related papers (2023-07-05T14:43:26Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - High-Resolution Pelvic MRI Reconstruction Using a Generative Adversarial
Network with Attention and Cyclic Loss [3.4358954898228604]
Super-resolution methods have shown excellent performance in accelerating MRI.
In some circumstances, it is difficult to obtain high-resolution images even with prolonged scan time.
We proposed a novel super-resolution method that uses a generative adversarial network (GAN) with cyclic loss and attention mechanism.
arXiv Detail & Related papers (2021-07-21T10:07:22Z) - MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution [3.0554209431226624]
Single image super-resolution aims to obtain a high-resolution output from one low-resolution image.
Deep learning-based SISR approaches have been widely discussed in medical image processing.
We propose an approach for medical image arbitrary-scale super-resolution (MIASSR)
arXiv Detail & Related papers (2021-05-22T14:24:25Z) - SRR-Net: A Super-Resolution-Involved Reconstruction Method for High
Resolution MR Imaging [7.42807471627113]
The proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images.
arXiv Detail & Related papers (2021-04-13T02:19:12Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.