A Federated Learning Scheme for Neuro-developmental Disorders:
Multi-Aspect ASD Detection
- URL: http://arxiv.org/abs/2211.00643v1
- Date: Mon, 31 Oct 2022 13:56:36 GMT
- Title: A Federated Learning Scheme for Neuro-developmental Disorders:
Multi-Aspect ASD Detection
- Authors: Hala Shamseddine, Safa Otoum, Azzam Mourad
- Abstract summary: Autism Spectrum Disorder (ASD) is a neuro-developmental syndrome resulting from alterations in the embryological brain before birth.
We propose a privacy-preserving federated learning scheme to predict ASD in a certain individual based on their behavioral and facial features.
- Score: 2.7221938979891385
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autism Spectrum Disorder (ASD) is a neuro-developmental syndrome resulting
from alterations in the embryological brain before birth. This disorder
distinguishes its patients by special socially restricted and repetitive
behavior in addition to specific behavioral traits. Hence, this would possibly
deteriorate their social behavior among other individuals, as well as their
overall interaction within their community. Moreover, medical research has
proved that ASD also affects the facial characteristics of its patients, making
the syndrome recognizable from distinctive signs within an individual's face.
Given that as a motivation behind our work, we propose a novel
privacy-preserving federated learning scheme to predict ASD in a certain
individual based on their behavioral and facial features, embedding a merging
process of both data features through facial feature extraction while
respecting patient data privacy. After training behavioral and facial image
data on federated machine learning models, promising results are achieved, with
70\% accuracy for the prediction of ASD according to behavioral traits in a
federated learning environment, and a 62\% accuracy is reached for the
prediction of ASD given an image of the patient's face. Then, we test the
behavior of regular as well as federated ML on our merged data, behavioral and
facial, where a 65\% accuracy is achieved with the regular logistic regression
model and 63\% accuracy with the federated learning model.
Related papers
- Hugging Rain Man: A Novel Facial Action Units Dataset for Analyzing Atypical Facial Expressions in Children with Autism Spectrum Disorder [2.3001245059699014]
We introduce a novel dataset, Hugging Rain Man, which includes facial action units (AUs) manually annotated by FACS experts for both children with ASD and typical development (TD)
The dataset comprises a rich collection of posed and spontaneous facial expressions, totaling approximately 130,000 frames, along with 22 AUs, 10 Action Descriptors (ADs) and atypicality ratings.
arXiv Detail & Related papers (2024-11-21T02:51:52Z) - Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder [3.6630139570443996]
We provide a dataset for training computer vision models to detect Autism Spectrum Disorder (ASD)-related phenotypic markers.
We trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%.
arXiv Detail & Related papers (2024-08-23T17:55:58Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Screening Autism Spectrum Disorder in childrens using Deep Learning
Approach : Evaluating the classification model of YOLOv8 by comparing with
other models [0.0]
We propose a practical solution for ASD screening using facial images using YoloV8 model.
Our model achieved a remarkable 89.64% accuracy in classification and an F1-score of 0.89.
arXiv Detail & Related papers (2023-06-25T18:02:01Z) - Comparison of Probabilistic Deep Learning Methods for Autism Detection [0.0]
Autism Spectrum Disorder (ASD) is one neuro developmental disorder that is now widespread in the world.
Early detection of the disorder helps in the onset treatment and helps one to lead a normal life.
arXiv Detail & Related papers (2023-03-09T17:49:37Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions.
Key evidence from neuroimaging data for pathological commonness remains unrevealed.
We build a deep learning model, using multi-site functional magnetic resonance imaging data, for classifying 5 different brain disorders from healthy controls.
arXiv Detail & Related papers (2023-02-23T09:22:05Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
We propose Contrastive Inhibitory Adaptati On (CIAO), a mechanism that adapts the last layer of facial encoders to depict specific affective characteristics on different datasets.
CIAO presents an improvement in facial expression recognition performance over six different datasets with very unique affective representations.
arXiv Detail & Related papers (2022-08-10T15:46:05Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - fMRI Neurofeedback Learning Patterns are Predictive of Personal and
Clinical Traits [62.997667081978825]
We obtain a personal signature of a person's learning progress in a self-neuromodulation task, guided by functional MRI (fMRI)
The signature is based on predicting the activity of the Amygdala in a second neurofeedback session, given a similar fMRI-derived brain state in the first session.
arXiv Detail & Related papers (2021-12-21T06:52:48Z) - Proposing a System Level Machine Learning Hybrid Architecture and
Approach for a Comprehensive Autism Spectrum Disorder Diagnosis [1.2691047660244335]
Autism Spectrum Disorder (ASD) is a severe neuropsychiatric disorder that affects intellectual development, social behavior, and facial features.
We propose to develop a hybrid architecture fully utilizing both social behavior and facial feature data to improve the accuracy of diagnosing ASD.
arXiv Detail & Related papers (2021-09-18T04:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.