Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder
- URL: http://arxiv.org/abs/2408.13255v1
- Date: Fri, 23 Aug 2024 17:55:58 GMT
- Title: Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder
- Authors: Marie Huynh, Aaron Kline, Saimourya Surabhi, Kaitlyn Dunlap, Onur Cezmi Mutlu, Mohammadmahdi Honarmand, Parnian Azizian, Peter Washington, Dennis P. Wall,
- Abstract summary: We provide a dataset for training computer vision models to detect Autism Spectrum Disorder (ASD)-related phenotypic markers.
We trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%.
- Score: 3.6630139570443996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection of autism, a neurodevelopmental disorder marked by social communication challenges, is crucial for timely intervention. Recent advancements have utilized naturalistic home videos captured via the mobile application GuessWhat. Through interactive games played between children and their guardians, GuessWhat has amassed over 3,000 structured videos from 382 children, both diagnosed with and without Autism Spectrum Disorder (ASD). This collection provides a robust dataset for training computer vision models to detect ASD-related phenotypic markers, including variations in emotional expression, eye contact, and head movements. We have developed a protocol to curate high-quality videos from this dataset, forming a comprehensive training set. Utilizing this set, we trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%, respectively. To boost diagnostic accuracy, we applied late fusion techniques to create ensemble models, improving the overall AUC to 90%. This approach also yielded more equitable results across different genders and age groups. Our methodology offers a significant step forward in the early detection of ASD by potentially reducing the reliance on subjective assessments and making early identification more accessibly and equitable.
Related papers
- Enhancing Autism Spectrum Disorder Early Detection with the Parent-Child Dyads Block-Play Protocol and an Attention-enhanced GCN-xLSTM Hybrid Deep Learning Framework [6.785167067600156]
This work proposes a novel Parent-Child Dyads Block-Play (PCB) protocol to identify behavioral patterns distinguishing ASD from typically developing toddlers.
We have compiled a substantial video dataset, featuring 40 ASD and 89 TD toddlers engaged in block play with parents.
This dataset exceeds previous efforts on both the scale of participants and the length of individual sessions.
arXiv Detail & Related papers (2024-08-29T21:53:01Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Localizing Moments of Actions in Untrimmed Videos of Infants with Autism Spectrum Disorder [5.2289135066938375]
We introduce a self-attention based TAL model designed to identify ASD-related behaviors in infant videos.
This study is the first to conduct end-to-end temporal action localization in untrimmed videos of infants with ASD.
We achieve 70% accuracy for look face, 79% accuracy for look object, 72% for smile and 65% for vocalization.
arXiv Detail & Related papers (2024-04-08T20:31:27Z) - Video-Based Autism Detection with Deep Learning [0.0]
We develop a deep learning model that analyzes video clips of children reacting to sensory stimuli.
Results show that our model effectively generalizes and understands key differences in the distinct movements of the children.
arXiv Detail & Related papers (2024-02-26T17:45:00Z) - Screening Autism Spectrum Disorder in childrens using Deep Learning
Approach : Evaluating the classification model of YOLOv8 by comparing with
other models [0.0]
We propose a practical solution for ASD screening using facial images using YoloV8 model.
Our model achieved a remarkable 89.64% accuracy in classification and an F1-score of 0.89.
arXiv Detail & Related papers (2023-06-25T18:02:01Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
We analyze the influence of replacing a DCNN with a state-of-the-art face recognition approach, iResNet with ArcFace.
Our proposed ensemble model achieves state-of-the-art performance on both seen and unseen disorders.
arXiv Detail & Related papers (2022-11-12T23:28:54Z) - Vision-Based Activity Recognition in Children with Autism-Related
Behaviors [15.915410623440874]
We demonstrate the effect of a region-based computer vision system to help clinicians and parents analyze a child's behavior.
The data is pre-processed by detecting the target child in the video to reduce the impact of background noise.
Motivated by the effectiveness of temporal convolutional models, we propose both light-weight and conventional models capable of extracting action features from video frames.
arXiv Detail & Related papers (2022-08-08T15:12:27Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - A Spatio-temporal Attention-based Model for Infant Movement Assessment
from Videos [44.71923220732036]
We develop a new method for fidgety movement assessment using human poses extracted from short clips.
Human poses capture only relevant motion profiles of joints and limbs and are free from irrelevant appearance artifacts.
Our experiments show that the proposed method achieves the ROC-AUC score of 81.87%, significantly outperforming existing competing methods with better interpretability.
arXiv Detail & Related papers (2021-05-20T14:31:54Z) - Early Autism Spectrum Disorders Diagnosis Using Eye-Tracking Technology [62.997667081978825]
Lack of money, absence of qualified specialists, and low level of trust to the correction methods are the main issues that affect the in-time diagnoses of ASD.
Our team developed the algorithm that will be able to predict the chances of ASD according to the information from the gaze activity of the child.
arXiv Detail & Related papers (2020-08-21T20:22:55Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.