Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models
- URL: http://arxiv.org/abs/2211.00731v1
- Date: Tue, 1 Nov 2022 20:23:49 GMT
- Title: Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models
- Authors: Moseli Mots'oehli and Anna Sergeevna Bosman and Johan Pieter De
Villiers
- Abstract summary: This work implements and compares adversarial and non-adversarial training of recurrent neural network music composers on MIDI data.
The evaluation indicates that adversarial training produces more aesthetically pleasing music.
- Score: 2.569647910019739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic music composition is a way of composing musical pieces with
minimal to no human intervention. While recurrent neural networks are
traditionally applied to many sequence-to-sequence prediction tasks, including
successful implementations of music composition, their standard supervised
learning approach based on input-to-output mapping leads to a lack of note
variety. These models can therefore be seen as potentially unsuitable for tasks
such as music generation. Generative adversarial networks learn the generative
distribution of data and lead to varied samples. This work implements and
compares adversarial and non-adversarial training of recurrent neural network
music composers on MIDI data. The resulting music samples are evaluated by
human listeners, their preferences recorded. The evaluation indicates that
adversarial training produces more aesthetically pleasing music.
Related papers
- Towards Leveraging Contrastively Pretrained Neural Audio Embeddings for Recommender Tasks [18.95453617434051]
Music recommender systems frequently utilize network-based models to capture relationships between music pieces, artists, and users.
New music pieces or artists often face the cold-start problem due to insufficient initial information.
To address this, one can extract content-based information directly from the music to enhance collaborative-filtering-based methods.
arXiv Detail & Related papers (2024-09-13T17:53:06Z) - MuPT: A Generative Symbolic Music Pretrained Transformer [56.09299510129221]
We explore the application of Large Language Models (LLMs) to the pre-training of music.
To address the challenges associated with misaligned measures from different tracks during generation, we propose a Synchronized Multi-Track ABC Notation (SMT-ABC Notation)
Our contributions include a series of models capable of handling up to 8192 tokens, covering 90% of the symbolic music data in our training set.
arXiv Detail & Related papers (2024-04-09T15:35:52Z) - A Survey of Music Generation in the Context of Interaction [3.6522809408725223]
Machine learning has been successfully used to compose and generate music, both melodies and polyphonic pieces.
Most of these models are not suitable for human-machine co-creation through live interaction.
arXiv Detail & Related papers (2024-02-23T12:41:44Z) - Self-Supervised Contrastive Learning for Robust Audio-Sheet Music
Retrieval Systems [3.997809845676912]
We show that self-supervised contrastive learning can mitigate the scarcity of annotated data from real music content.
We employ the snippet embeddings in the higher-level task of cross-modal piece identification.
In this work, we observe that the retrieval quality improves from 30% up to 100% when real music data is present.
arXiv Detail & Related papers (2023-09-21T14:54:48Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
Symbolic music generation aims to create musical notes, which can help users compose music.
We introduce a framework known as GETMusic, with GET'' standing for GEnerate music Tracks''
GETScore represents musical notes as tokens and organizes tokens in a 2D structure, with tracks stacked vertically and progressing horizontally over time.
Our proposed representation, coupled with the non-autoregressive generative model, empowers GETMusic to generate music with any arbitrary source-target track combinations.
arXiv Detail & Related papers (2023-05-18T09:53:23Z) - Music Instrument Classification Reprogrammed [79.68916470119743]
"Reprogramming" is a technique that utilizes pre-trained deep and complex neural networks originally targeting a different task by modifying and mapping both the input and output of the pre-trained model.
We demonstrate that reprogramming can effectively leverage the power of the representation learned for a different task and that the resulting reprogrammed system can perform on par or even outperform state-of-the-art systems at a fraction of training parameters.
arXiv Detail & Related papers (2022-11-15T18:26:01Z) - Relating Human Perception of Musicality to Prediction in a Predictive
Coding Model [0.8062120534124607]
We explore the use of a neural network inspired by predictive coding for modeling human music perception.
This network was developed based on the computational neuroscience theory of recurrent interactions in the hierarchical visual cortex.
We adapt this network to model the hierarchical auditory system and investigate whether it will make similar choices to humans regarding the musicality of a set of random pitch sequences.
arXiv Detail & Related papers (2022-10-29T12:20:01Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
This paper evaluates different types of memory mechanisms (memory cells) and analyses their performance in the field of music composition.
A set of quantitative metrics is presented to evaluate the performance of the proposed architecture automatically.
arXiv Detail & Related papers (2020-12-02T14:19:19Z) - Detecting Generic Music Features with Single Layer Feedforward Network
using Unsupervised Hebbian Computation [3.8707695363745223]
The authors extract information on such features from a popular open-source music corpus.
They apply unsupervised Hebbian learning techniques on their single-layer neural network using the same dataset.
The unsupervised training algorithm enhances their proposed neural network to achieve an accuracy of 90.36% for successful music feature detection.
arXiv Detail & Related papers (2020-08-31T13:57:31Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
Deep neural network-based methods incorporating score information into MPA models have not yet been investigated.
We introduce three different models capable of score-informed performance assessment.
arXiv Detail & Related papers (2020-08-01T07:46:24Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
This paper presents a deep reinforcement learning algorithm for online accompaniment generation.
The proposed algorithm is able to respond to the human part and generate a melodic, harmonic and diverse machine part.
arXiv Detail & Related papers (2020-02-08T03:53:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.