Maximum Likelihood Distillation for Robust Modulation Classification
- URL: http://arxiv.org/abs/2211.00748v1
- Date: Tue, 1 Nov 2022 21:06:11 GMT
- Title: Maximum Likelihood Distillation for Robust Modulation Classification
- Authors: Javier Maroto, G\'er\^ome Bovet and Pascal Frossard
- Abstract summary: We build on knowledge distillation ideas and adversarial training to build more robust AMC systems.
We propose to use the Maximum Likelihood function, which could solve the AMC problem in offline settings, to generate better training labels.
- Score: 50.51144496609274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks are being extensively used in communication systems and
Automatic Modulation Classification (AMC) in particular. However, they are very
susceptible to small adversarial perturbations that are carefully crafted to
change the network decision. In this work, we build on knowledge distillation
ideas and adversarial training in order to build more robust AMC systems. We
first outline the importance of the quality of the training data in terms of
accuracy and robustness of the model. We then propose to use the Maximum
Likelihood function, which could solve the AMC problem in offline settings, to
generate better training labels. Those labels teach the model to be uncertain
in challenging conditions, which permits to increase the accuracy, as well as
the robustness of the model when combined with adversarial training.
Interestingly, we observe that this increase in performance transfers to online
settings, where the Maximum Likelihood function cannot be used in practice.
Overall, this work highlights the potential of learning to be uncertain in
difficult scenarios, compared to directly removing label noise.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Optimal design of experiments in the context of machine-learning inter-atomic potentials: improving the efficiency and transferability of kernel based methods [0.7234862895932991]
Data-driven, machine learning (ML) models of atomistic interactions can relate nuanced aspects of atomic arrangements into predictions of energies and forces.
The main challenge stems from the fact that descriptors of chemical environments are often sparse high-dimensional objects without a well-defined continuous metric.
We will demonstrate that classical concepts of statistical planning of experiments and optimal design can help to mitigate such problems at a relatively low computational cost.
arXiv Detail & Related papers (2024-05-14T14:14:23Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - SafeAMC: Adversarial training for robust modulation recognition models [53.391095789289736]
In communication systems, there are many tasks, like modulation recognition, which rely on Deep Neural Networks (DNNs) models.
These models have been shown to be susceptible to adversarial perturbations, namely imperceptible additive noise crafted to induce misclassification.
We propose to use adversarial training, which consists of fine-tuning the model with adversarial perturbations, to increase the robustness of automatic modulation recognition models.
arXiv Detail & Related papers (2021-05-28T11:29:04Z) - Frequency-based Automated Modulation Classification in the Presence of
Adversaries [17.930854969511046]
We present a novel receiver architecture consisting of deep learning models capable of withstanding transferable adversarial interference.
In this work, we demonstrate classification performance improvements greater than 30% on recurrent neural networks (RNNs) and greater than 50% on convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-11-02T17:12:22Z) - Once-for-All Adversarial Training: In-Situ Tradeoff between Robustness
and Accuracy for Free [115.81899803240758]
Adversarial training and its many variants substantially improve deep network robustness, yet at the cost of compromising standard accuracy.
This paper asks how to quickly calibrate a trained model in-situ, to examine the achievable trade-offs between its standard and robust accuracies.
Our proposed framework, Once-for-all Adversarial Training (OAT), is built on an innovative model-conditional training framework.
arXiv Detail & Related papers (2020-10-22T16:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.