論文の概要: DyAnNet: A Scene Dynamicity Guided Self-Trained Video Anomaly Detection
Network
- arxiv url: http://arxiv.org/abs/2211.00882v1
- Date: Wed, 2 Nov 2022 05:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 13:29:09.867108
- Title: DyAnNet: A Scene Dynamicity Guided Self-Trained Video Anomaly Detection
Network
- Title(参考訳): DyAnNet: 自己学習型ビデオ異常検出ネットワーク
- Authors: Kamalakar Thakare, Yash Raghuwanshi, Debi Prosad Dogra, Heeseung Choi,
Ig-Jae Kim
- Abstract要約: 本稿では,ビデオセグメントの深い特徴空間を分割するために,分離木に基づく教師なしクラスタリングを用いる。
この手法は、UCF-Crime、CCTV-Fights、UBI-Fightsの3つの一般的なビデオ異常データセットで評価されている。
実験結果から,提案手法は最先端のビデオ異常検出法と比較して,競争精度が向上することがわかった。
- 参考スコア(独自算出の注目度): 21.56420143845831
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised approaches for video anomaly detection may not perform as good
as supervised approaches. However, learning unknown types of anomalies using an
unsupervised approach is more practical than a supervised approach as
annotation is an extra burden. In this paper, we use isolation tree-based
unsupervised clustering to partition the deep feature space of the video
segments. The RGB- stream generates a pseudo anomaly score and the flow stream
generates a pseudo dynamicity score of a video segment. These scores are then
fused using a majority voting scheme to generate preliminary bags of positive
and negative segments. However, these bags may not be accurate as the scores
are generated only using the current segment which does not represent the
global behavior of a typical anomalous event. We then use a refinement strategy
based on a cross-branch feed-forward network designed using a popular I3D
network to refine both scores. The bags are then refined through a segment
re-mapping strategy. The intuition of adding the dynamicity score of a segment
with the anomaly score is to enhance the quality of the evidence. The method
has been evaluated on three popular video anomaly datasets, i.e., UCF-Crime,
CCTV-Fights, and UBI-Fights. Experimental results reveal that the proposed
framework achieves competitive accuracy as compared to the state-of-the-art
video anomaly detection methods.
- Abstract(参考訳): ビデオ異常検出のための教師なしアプローチは、教師付きアプローチほど機能しない可能性がある。
しかしながら、教師なしアプローチを用いた未知のタイプの異常の学習は、アノテーションが余分な負担となるため、教師なしアプローチよりも実践的です。
本稿では,ビデオセグメントの深い特徴空間を分割するために,分離木に基づく教師なしクラスタリングを用いる。
RGBストリームは擬似異常スコアを生成し、フローストリームはビデオセグメントの擬似動的スコアを生成する。
これらのスコアは多数決方式で融合され、正のセグメントと負のセグメントの予備バッグを生成する。
しかし、これらの袋は、典型的な異常な事象の全体的挙動を表わさない現在のセグメントのみを用いてスコアが生成されるため、正確ではないかもしれない。
次に,人気のあるi3dネットワークを用いたクロスブランチフィードフォワードネットワークに基づくリファインメント戦略を用いて,両者のスコアを洗練する。
バッグはセグメント再マッピング戦略によって洗練される。
異常スコアにセグメントの動的スコアを追加するという直感は、証拠の品質を高めることである。
この手法は、UCF-Crime、CCTV-Fights、UBI-Fightsの3つの一般的なビデオ異常データセットで評価されている。
実験結果から,提案手法は最先端ビデオ異常検出法と比較して,競合精度が向上することが判明した。
関連論文リスト
- Detection of Object Throwing Behavior in Surveillance Videos [8.841708075914353]
本稿では,ディープラーニングを用いた監視ビデオにおける投球行動検出手法を提案する。
Smart Cityプロジェクトのユースケースに対処するために、私たちはまず、新しいパブリックな"Throwing Action"データセットを生成します。
UCF-CrimeおよびThrowing-Actionデータセットにおける異常検出のための特徴抽出器の性能の比較を行った。
論文 参考訳(メタデータ) (2024-03-11T09:53:19Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
弱教師付きビデオ異常検出のための動的消去ネットワーク(DE-Net)を提案する。
まず,異なる長さのセグメントから特徴を抽出できるマルチスケール時間モデリングモジュールを提案する。
そして,検出された異常の完全性を動的に評価する動的消去戦略を設計する。
論文 参考訳(メタデータ) (2023-12-04T09:40:11Z) - A Coarse-to-Fine Pseudo-Labeling (C2FPL) Framework for Unsupervised
Video Anomaly Detection [4.494911384096143]
ビデオにおける異常事象の検出は、監視などのアプリケーションにおいて重要な問題である。
セグメントレベル(正規/異常)の擬似ラベルを生成する簡易な2段擬似ラベル生成フレームワークを提案する。
提案した粗大な擬似ラベル生成器は、慎重に設計された階層的分割クラスタリングと統計的仮説テストを用いている。
論文 参考訳(メタデータ) (2023-10-26T17:59:19Z) - Mitigating Representation Bias in Action Recognition: Algorithms and
Benchmarks [76.35271072704384]
ディープラーニングモデルは、稀なシーンやオブジェクトを持つビデオに適用すると、パフォーマンスが悪くなります。
この問題にはアルゴリズムとデータセットの2つの異なる角度から対処する。
偏りのある表現は、他のデータセットやタスクに転送するとより一般化できることを示す。
論文 参考訳(メタデータ) (2022-09-20T00:30:35Z) - Anomaly detection in surveillance videos using transformer based
attention model [3.2968779106235586]
本研究は、トレーニングビデオにおける異常セグメントの注釈付けを避けるために、弱教師付き戦略を用いることを示唆する。
提案するフレームワークは,実世界のデータセット,すなわちShanghaiTech Campusデータセットで検証される。
論文 参考訳(メタデータ) (2022-06-03T12:19:39Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Unsupervised Video Summarization with a Convolutional Attentive
Adversarial Network [32.90753137435032]
我々は,教師なしの方法で深層要約器を構築するために,畳み込み型敵ネットワーク(CAAN)を提案する。
具体的には、ビデオのグローバルな表現を抽出する完全畳み込みシーケンスネットワークと、正規化された重要度スコアを出力する注目ベースのネットワークを用いる。
その結果,提案手法の他の非教師なし手法に対する優位性を示した。
論文 参考訳(メタデータ) (2021-05-24T07:24:39Z) - Video-based Person Re-identification without Bells and Whistles [49.51670583977911]
ビデオベースの人物再識別(Re-ID)は、異なるカメラの下で歩行者を特定するために、ビデオトラッカーとトリミングされたビデオフレームをマッチングすることを目的としている。
従来の方法による不完全な検出と追跡の結果から, 収穫したトラックレットの空間的, 時間的不整合が生じている。
本稿では,深層学習に基づくトラックレットの検出と追跡を適用することで,これらの予期せぬノイズを効果的に低減できる簡易な再検出リンク(DL)モジュールを提案する。
論文 参考訳(メタデータ) (2021-05-22T10:17:38Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
監視ビデオにおける異常事象の検出は、画像およびビデオ処理コミュニティの間で困難かつ実践的な研究課題である。
本稿では、ビデオレベルラベルのみを用いて自己推論方式で訓練されたディープニューラルネットワークに基づく、弱い教師付き異常検出フレームワークを提案する。
提案するフレームワークは,UCF-crimeやShanghaiTech,Ped2など,公開されている実世界の異常検出データセット上で評価されている。
論文 参考訳(メタデータ) (2020-08-27T02:14:15Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
本稿では,ビデオにおける行動認識のための表現の教師なし学習の課題に対処する。
まず、このクラスの2つのトップパフォーマンス目標(インスタンス認識と局所集約)を適用することを提案する。
有望な性能を観察するが、定性的解析により、学習した表現が動きのパターンを捉えないことを示す。
論文 参考訳(メタデータ) (2020-06-28T22:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。