Discover Important Paths in the Knowledge Graph Based on Dynamic
Relation Confidence
- URL: http://arxiv.org/abs/2211.00914v1
- Date: Wed, 2 Nov 2022 06:37:01 GMT
- Title: Discover Important Paths in the Knowledge Graph Based on Dynamic
Relation Confidence
- Authors: Shanqing Yu, Yijun Wu, Ran Gan, Jiajun Zhou, Ziwan Zheng, Qi Xuan
- Abstract summary: The reasoning method based on path features is widely used in the field of knowledge graph reasoning.
This paper proposes a method called DC-Path that combines dynamic relation confidence and other indicators to evaluate path features.
- Score: 2.6032596415721945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the existing knowledge graphs are not usually complete and can be
complemented by some reasoning algorithms. The reasoning method based on path
features is widely used in the field of knowledge graph reasoning and
completion on account of that its have strong interpretability. However,
reasoning methods based on path features still have several problems in the
following aspects: Path search isinefficient, insufficient paths for sparse
tasks and some paths are not helpful for reasoning tasks. In order to solve the
above problems, this paper proposes a method called DC-Path that combines
dynamic relation confidence and other indicators to evaluate path features, and
then guide path search, finally conduct relation reasoning. Experimental result
show that compared with the existing relation reasoning algorithm, this method
can select the most representative features in the current reasoning task from
the knowledge graph and achieve better performance on the current relation
reasoning task.
Related papers
- Soft Reasoning Paths for Knowledge Graph Completion [63.23109723605835]
Reasoning paths are reliable information in knowledge graph completion (KGC)<n>In real-world applications, it is difficult to guarantee that computationally affordable paths exist toward all candidate entities.<n>We introduce soft reasoning paths to make the proposed algorithm more stable against missing path circumstances.
arXiv Detail & Related papers (2025-05-06T08:12:48Z) - Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
It is critical not only to retrieve relevant information but also to provide causal reasoning and explainability.
This paper proposes a novel pipeline that filters large knowledge graphs to emphasize cause-effect edges.
Experiments on medical question-answering tasks show consistent gains, with up to a 10% absolute improvement.
arXiv Detail & Related papers (2025-01-24T19:31:06Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.
However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.
This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.
We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - Path-of-Thoughts: Extracting and Following Paths for Robust Relational Reasoning with Large Language Models [62.12031550252253]
We present Path-of-Thoughts (PoT), a novel framework designed to tackle relation reasoning.
PoT efficiently extracts a task-agnostic graph that identifies crucial entities, relations, and attributes within the problem context.
PoT identifies relevant reasoning chains within the graph corresponding to the posed question, facilitating inference of potential answers.
arXiv Detail & Related papers (2024-12-23T20:27:12Z) - KnowFormer: Revisiting Transformers for Knowledge Graph Reasoning [10.445709698341682]
We propose KnowFormer.KnowFormer to perform reasoning on knowledge graphs from the message-passing perspective.
To incorporate structural information into the self-attention mechanism, we introduce structure-aware modules to calculate query, key, and value.
Experimental results demonstrate the superior performance of KnowFormer compared to prominent baseline methods on both transductive and inductive benchmarks.
arXiv Detail & Related papers (2024-09-19T16:08:10Z) - Neural Probabilistic Logic Learning for Knowledge Graph Reasoning [10.473897846826956]
This paper aims to design a reasoning framework that achieves accurate reasoning on knowledge graphs.
We introduce a scoring module that effectively enhances the expressive power of embedding networks.
We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference.
arXiv Detail & Related papers (2024-07-04T07:45:46Z) - Improving Multi-hop Logical Reasoning in Knowledge Graphs with Context-Aware Query Representation Learning [3.7411114598484647]
Multi-hop logical reasoning on knowledge graphs is a pivotal task in natural language processing.
We propose a model-agnostic methodology that enhances the effectiveness of existing multi-hop logical reasoning approaches.
Our method consistently enhances the three multi-hop reasoning foundation models, achieving performance improvements of up to 19.5%.
arXiv Detail & Related papers (2024-06-11T07:48:20Z) - FiDeLiS: Faithful Reasoning in Large Language Model for Knowledge Graph Question Answering [46.41364317172677]
We propose a retrieval augmented reasoning method, FiDeLiS, which enhances knowledge graph question answering.
FiDeLiS uses a keyword-enhanced retrieval mechanism that fetches relevant entities and relations from a vector-based index of KGs.
A distinctive feature of our approach is its blend of natural language planning with beam search to optimize the selection of reasoning paths.
arXiv Detail & Related papers (2024-05-22T17:56:53Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
We propose Mulan, a unified multi-modal causal structure learning method for root cause localization.
We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data.
We also introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph.
arXiv Detail & Related papers (2024-02-04T05:50:38Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues.
We develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs.
arXiv Detail & Related papers (2020-11-06T04:57:37Z) - Joint Semantics and Data-Driven Path Representation for Knowledge Graph
Inference [60.048447849653876]
We propose a novel joint semantics and data-driven path representation that balances explainability and generalization in the framework of KG embedding.
Our proposed model is evaluated on two classes of tasks: link prediction and path query answering task.
arXiv Detail & Related papers (2020-10-06T10:24:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.