Neural Probabilistic Logic Learning for Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2407.03704v1
- Date: Thu, 4 Jul 2024 07:45:46 GMT
- Title: Neural Probabilistic Logic Learning for Knowledge Graph Reasoning
- Authors: Fengsong Sun, Jinyu Wang, Zhiqing Wei, Xianchao Zhang,
- Abstract summary: This paper aims to design a reasoning framework that achieves accurate reasoning on knowledge graphs.
We introduce a scoring module that effectively enhances the expressive power of embedding networks.
We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference.
- Score: 10.473897846826956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph (KG) reasoning is a task that aims to predict unknown facts based on known factual samples. Reasoning methods can be divided into two categories: rule-based methods and KG-embedding based methods. The former possesses precise reasoning capabilities but finds it challenging to reason efficiently over large-scale knowledge graphs. While gaining the ability to reason over large-scale knowledge graphs, the latter sacrifices reasoning accuracy. This paper aims to design a reasoning framework called Neural Probabilistic Logic Learning(NPLL) that achieves accurate reasoning on knowledge graphs. Our approach introduces a scoring module that effectively enhances the expressive power of embedding networks, striking a balance between model simplicity and reasoning capabilities. We improve the interpretability of the model by incorporating a Markov Logic Network based on variational inference. We empirically evaluate our approach on several benchmark datasets, and the experimental results validate that our method substantially enhances the accuracy and quality of the reasoning results.
Related papers
- LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
We introduce LogicAsker, a novel approach for evaluating and enhancing the logical reasoning capabilities of large language models (LLMs)
Our methodology reveals significant gaps in LLMs' learning of logical rules, with identified reasoning failures ranging from 29% to 90% across different models.
We leverage these findings to construct targeted demonstration examples and fine-tune data, notably enhancing logical reasoning in models like GPT-4o by up to 5%.
arXiv Detail & Related papers (2024-01-01T13:53:53Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
We propose a general bi-level probabilistic graphical reasoning framework called GBPGR.
In GBPGR, the results of symbolic reasoning are utilized to refine and correct the predictions made by the deep learning models.
Our approach achieves high performance and exhibits effective generalization in both transductive and inductive tasks.
arXiv Detail & Related papers (2023-09-16T09:15:37Z) - Continual Reasoning: Non-Monotonic Reasoning in Neurosymbolic AI using
Continual Learning [2.912595438026074]
We show that by combining a neural-symbolic system with methods from continual learning, Logic Networks can obtain a higher level of accuracy.
Continual learning is added to LTNs by adopting a curriculum of learning from knowledge and data with recall.
Results indicate significant improvement on the non-monotonic reasoning problem.
arXiv Detail & Related papers (2023-05-03T15:11:34Z) - MERIt: Meta-Path Guided Contrastive Learning for Logical Reasoning [63.50909998372667]
We propose MERIt, a MEta-path guided contrastive learning method for logical ReasonIng of text.
Two novel strategies serve as indispensable components of our method.
arXiv Detail & Related papers (2022-03-01T11:13:00Z) - MPLR: a novel model for multi-target learning of logical rules for
knowledge graph reasoning [5.499688003232003]
We study the problem of learning logic rules for reasoning on knowledge graphs for completing missing factual triplets.
We propose a model called MPLR that improves the existing models to fully use training data and multi-target scenarios are considered.
Experimental results empirically demonstrate that our MPLR model outperforms state-of-the-art methods on five benchmark datasets.
arXiv Detail & Related papers (2021-12-12T09:16:00Z) - KompaRe: A Knowledge Graph Comparative Reasoning System [85.72488258453926]
This paper introduces comparative reasoning over knowledge graphs, which aims to infer the commonality and inconsistency with respect to multiple pieces of clues.
We develop KompaRe, the first of its kind prototype system that provides comparative reasoning capability over large knowledge graphs.
arXiv Detail & Related papers (2020-11-06T04:57:37Z) - Neural Logic Reasoning [47.622957656745356]
We propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and logic reasoning.
LINN learns basic logical operations such as AND, OR, NOT as neural modules, and conducts propositional logical reasoning through the network for inference.
Experiments show that LINN significantly outperforms state-of-the-art recommendation models in Top-K recommendation.
arXiv Detail & Related papers (2020-08-20T14:53:23Z) - A Heterogeneous Graph with Factual, Temporal and Logical Knowledge for
Question Answering Over Dynamic Contexts [81.4757750425247]
We study question answering over a dynamic textual environment.
We develop a graph neural network over the constructed graph, and train the model in an end-to-end manner.
arXiv Detail & Related papers (2020-04-25T04:53:54Z) - Relational Neural Machines [19.569025323453257]
This paper presents a novel framework allowing jointly train the parameters of the learners and of a First-Order Logic based reasoner.
A Neural Machine is able recover both classical learning results in case of pure sub-symbolic learning, and Markov Logic Networks.
Proper algorithmic solutions are devised to make learning and inference tractable in large-scale problems.
arXiv Detail & Related papers (2020-02-06T10:53:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.