論文の概要: Style Augmentation improves Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2211.01125v1
- Date: Wed, 2 Nov 2022 14:00:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 14:12:34.180133
- Title: Style Augmentation improves Medical Image Segmentation
- Title(参考訳): 医用画像セグメンテーションを改良したスタイル拡張
- Authors: Kevin Ginsburger
- Abstract要約: 分類タスクですでに使用されているスタイル拡張は、テクスチャの過度な適合を減らし、セグメンテーションのパフォーマンスを向上させる。
この研究は、分類タスクですでに使用されているスタイル拡張のMoNuSegデータセットで示されており、テクスチャの過度な適合を低減し、セグメンテーションのパフォーマンスを向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the limitation of available labeled data, medical image segmentation
is a challenging task for deep learning. Traditional data augmentation
techniques have been shown to improve segmentation network performances by
optimizing the usage of few training examples. However, current augmentation
approaches for segmentation do not tackle the strong texture bias of
convolutional neural networks, observed in several studies. This work shows on
the MoNuSeg dataset that style augmentation, which is already used in
classification tasks, helps reducing texture over-fitting and improves
segmentation performance.
- Abstract(参考訳): ラベル付きデータの制限のため、深層学習における医療画像のセグメンテーションは難しい課題である。
従来のデータ拡張技術は、少数のトレーニング例の使用を最適化することにより、セグメンテーションネットワークのパフォーマンスを改善することが示されている。
しかし、いくつかの研究で観察された畳み込みニューラルネットワークの強いテクスチャバイアスに、セグメンテーションの現在の拡張アプローチは対応していない。
この研究は、分類タスクですでに使用されているスタイル拡張のMoNuSegデータセットで示されており、テクスチャの過度な適合を低減し、セグメンテーションのパフォーマンスを向上させる。
関連論文リスト
- ScribbleGen: Generative Data Augmentation Improves Scribble-supervised Semantic Segmentation [10.225021032417589]
本稿では,スクリブル教師付きセマンティックセグメンテーションのための生成データ拡張手法であるScribbleGenを提案する。
セマンティックスクリブルに条件付き制御ネット拡散モデルを用いて,高品質なトレーニングデータを生成する。
我々のフレームワークは、完全に教師されたセグメンテーションを超越しても、小さなデータセットでのセグメンテーション性能を著しく改善することを示す。
論文 参考訳(メタデータ) (2023-11-28T13:44:33Z) - ARHNet: Adaptive Region Harmonization for Lesion-aware Augmentation to
Improve Segmentation Performance [61.04246102067351]
本研究では,合成画像をよりリアルに見せるために,前景調和フレームワーク(ARHNet)を提案する。
実画像と合成画像を用いたセグメンテーション性能の向上に本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-07-02T10:39:29Z) - Trustworthy Deep Learning for Medical Image Segmentation [1.0152838128195467]
深層学習に基づくセグメンテーション法の主な制限は、画像取得プロトコルにおける可変性に対する堅牢性の欠如である。
多くの場合、手動による医用画像のセグメンテーションは高度に熟練したラッカーを必要とし、時間を要する。
この論文は、これらの制限を緩和する新しい数学的および最適化手法を導入している。
論文 参考訳(メタデータ) (2023-05-27T12:12:53Z) - Improving CT Image Segmentation Accuracy Using StyleGAN Driven Data
Augmentation [42.034896915716374]
本稿では,公開可能な大規模医療データセットをセグメント化するためのStyleGANによるアプローチを提案する。
スタイル転送はトレーニングデータセットを拡張し、新しい解剖学的音声画像を生成するために使用される。
次に、拡張データセットを使用してU-Netセグメンテーションネットワークをトレーニングし、セグメンテーション精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-02-07T06:34:10Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
本稿では,学習データの利用効率を向上させるために,逆データ拡張手法を提案する。
本稿では,データ拡張モデルとセグメンテーションネットワークを協調的に最適化する汎用的なタスク駆動学習フレームワークを提案する。
提案した逆データ拡張は生成ネットワークに依存しず,汎用セグメンテーションネットワークのプラグインモジュールとして使用できる。
論文 参考訳(メタデータ) (2021-08-07T11:32:37Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
事前訓練されたセグメンテーションモデルと、新しいクラスを含む画像が少ないことを前提として、我々が目指すのは、以前に見たセグメンテーション能力を維持しながら、新しいクラスをセグメンテーションすることである。
このシナリオにおけるエンド・ツー・エンドのトレーニングの主な問題はどのようなものかを示します。
一 バッチ正規化統計を、バッチ正規化で修正できる新しいクラスへ向けての漂流すること。
二 旧クラスの忘れ物 正規化戦略で解決できるもの。
論文 参考訳(メタデータ) (2020-11-30T20:45:56Z) - Synthetic Convolutional Features for Improved Semantic Segmentation [139.5772851285601]
本稿では、中間畳み込み特徴を生成することを提案し、そのような中間畳み込み特徴に対応する最初の合成手法を提案する。
これにより、ラベルマスクから新機能を生成し、トレーニング手順にうまく組み込むことができます。
Cityscapes と ADE20K の2つの挑戦的なデータセットに関する実験結果と分析により,生成した特徴がセグメンテーションタスクのパフォーマンスを向上させることが示された。
論文 参考訳(メタデータ) (2020-09-18T14:12:50Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Semi-supervised few-shot learning for medical image segmentation [21.349705243254423]
大規模な注釈付きデータセットの必要性を緩和する最近の試みは、数ショットの学習パラダイムの下でトレーニング戦略を開発した。
セマンティックセグメンテーションのための新しい数発の学習フレームワークを提案し,各エピソードでラベルのない画像も利用できるようにした。
エピソードトレーニングにおけるラベルなしのサロゲートタスクを含めると、より強力な特徴表現がもたらされることを示す。
論文 参考訳(メタデータ) (2020-03-18T20:37:18Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。