論文の概要: User-Entity Differential Privacy in Learning Natural Language Models
- arxiv url: http://arxiv.org/abs/2211.01141v1
- Date: Tue, 1 Nov 2022 16:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 12:44:12.973172
- Title: User-Entity Differential Privacy in Learning Natural Language Models
- Title(参考訳): 自然言語モデル学習におけるユーザエンティティ差分プライバシー
- Authors: Phung Lai, NhatHai Phan, Tong Sun, Rajiv Jain, Franck Dernoncourt,
Jiuxiang Gu, Nikolaos Barmpalios
- Abstract要約: 自然言語モデル(NLM)の学習において,テキストデータにおけるセンシティブなエンティティとデータ所有者の両方に対して,形式的なプライバシ保護を実現するために,UeDP(User-entity differential privacy)という新しい概念を導入する。
UeDPを保存するためにUeDP-Algと呼ばれる新しいアルゴリズムを開発し、ユーザとセンシティブなエンティティサンプリングプロセスをシームレスに組み合わせることで、密接な境界感度でプライバシ損失とモデルユーティリティのトレードオフを最適化した。
我々のUeDP-Algは、ベンチマークデータセットを用いて、複数のNLMタスクにおいて、同一のプライバシ予算消費の下でモデルユーティリティのベースラインアプローチより優れていることを示す理論分析と評価を行った。
- 参考スコア(独自算出の注目度): 46.177052564590646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a novel concept of user-entity differential
privacy (UeDP) to provide formal privacy protection simultaneously to both
sensitive entities in textual data and data owners in learning natural language
models (NLMs). To preserve UeDP, we developed a novel algorithm, called
UeDP-Alg, optimizing the trade-off between privacy loss and model utility with
a tight sensitivity bound derived from seamlessly combining user and sensitive
entity sampling processes. An extensive theoretical analysis and evaluation
show that our UeDP-Alg outperforms baseline approaches in model utility under
the same privacy budget consumption on several NLM tasks, using benchmark
datasets.
- Abstract(参考訳): 本稿では,テキストデータにおけるセンシティブなエンティティと自然言語モデル(NLM)学習におけるデータ所有者の両方に対して,形式的なプライバシ保護を実現するために,UeDPという新しい概念を導入する。
uedpを保存するために,ユーザとセンシティブなエンティティサンプリングプロセスをシームレスに組み合わせることによって,プライバシ損失とモデルユーティリティとのトレードオフを最適化する,新しいアルゴリズム uedp-alg を開発した。
UeDP-Algは,複数のNLMタスクにおいて,同一のプライバシ予算消費下でのモデルユーティリティのベースラインアプローチよりも優れていることを示す。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - DPGOMI: Differentially Private Data Publishing with Gaussian Optimized
Model Inversion [8.204115285718437]
本稿では,ガウス最適化モデルインバージョン(DPGOMI)を用いた微分プライベートデータパブリッシングを提案し,この問題に対処する。
提案手法では, パブリックジェネレータを用いてプライベートデータを潜時空間にマッピングし, コンバージェンス特性が向上した低次元DP-GANを用いる。
以上の結果から,DPGOMIは,インセプションスコア,Freche't Inception Distance,分類性能において,標準DP-GAN法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-06T18:46:22Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Differentially Private Language Models for Secure Data Sharing [19.918137395199224]
本稿では,生成言語モデルを個別に学習し,その結果を抽出する方法について述べる。
自然言語のプロンプトと新しいプロンプトミスマッチの損失を用いることで、高度に正確で流動的なテキストデータセットを作成できる。
我々は、我々の合成データセットが元のデータから情報を漏らさず、言語質が高いことを示す徹底的な実験を行う。
論文 参考訳(メタデータ) (2022-10-25T11:12:56Z) - On the utility and protection of optimization with differential privacy
and classic regularization techniques [9.413131350284083]
本稿では,標準最適化手法に対するDP-SGDアルゴリズムの有効性について検討する。
我々は、差分プライバシーの欠陥と限界について議論し、ドロップアウトとl2-規則化のプライバシー保護特性がしばしば優れていることを実証した。
論文 参考訳(メタデータ) (2022-09-07T14:10:21Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
本稿では,大規模なトランスフォーマーベース言語モデルのためのSDPを実現するための,シンプルで効果的なジャストファイントゥンツースプライバシ機構を提案する。
実験により, カナリア挿入攻撃に対して頑健でありながら, 高い性能が得られた。
論文 参考訳(メタデータ) (2022-04-15T22:36:55Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
本稿では, 深層生成モデルを用いたデータ・フレームワークを, 差分的にプライベートな方法で提案する。
当社のフレームワークでは、センシティブなデータは、厳格なプライバシ保証をワンショットで行うことで衛生化されています。
提案手法は理論的に性能が保証され,複数のデータセットに対する経験的評価により,提案手法が適切なプライバシーレベルで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-08T18:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。