Bias-Aware Face Mask Detection Dataset
- URL: http://arxiv.org/abs/2211.01207v1
- Date: Wed, 2 Nov 2022 15:38:31 GMT
- Title: Bias-Aware Face Mask Detection Dataset
- Authors: Alperen Kantarc{\i} and Ferda Ofli and Muhammad Imran and Haz{\i}m
Kemal Ekenel
- Abstract summary: We present a novel face mask detection dataset that contains images posted on Twitter during the pandemic from around the world.
Unlike previous datasets, the proposed Bias-Aware Face Mask Detection dataset contains more images from underrepresented race and age groups.
- Score: 11.400704308166805
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In December 2019, a novel coronavirus (COVID-19) spread so quickly around the
world that many countries had to set mandatory face mask rules in public areas
to reduce the transmission of the virus. To monitor public adherence,
researchers aimed to rapidly develop efficient systems that can detect faces
with masks automatically. However, the lack of representative and novel
datasets proved to be the biggest challenge. Early attempts to collect face
mask datasets did not account for potential race, gender, and age biases.
Therefore, the resulting models show inherent biases toward specific race
groups, such as Asian or Caucasian. In this work, we present a novel face mask
detection dataset that contains images posted on Twitter during the pandemic
from around the world. Unlike previous datasets, the proposed Bias-Aware Face
Mask Detection (BAFMD) dataset contains more images from underrepresented race
and age groups to mitigate the problem for the face mask detection task. We
perform experiments to investigate potential biases in widely used face mask
detection datasets and illustrate that the BAFMD dataset yields models with
better performance and generalization ability. The dataset is publicly
available at https://github.com/Alpkant/BAFMD.
Related papers
- A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - Development of a face mask detection pipeline for mask-wearing
monitoring in the era of the COVID-19 pandemic: A modular approach [0.0]
During the SARS-Cov-2 pandemic, mask-wearing became an effective tool to prevent spreading and contracting the virus.
The ability to monitor the mask-wearing rate in the population would be useful for determining public health strategies against the virus.
We present a two-step face mask detection approach consisting of two separate modules: 1) face detection and alignment and 2) face mask classification.
arXiv Detail & Related papers (2021-12-30T12:32:33Z) - 3D High-Fidelity Mask Face Presentation Attack Detection Challenge [79.2407530090659]
A large-scale High-Fidelity Mask dataset, namely CASIA-SURF HiFiMask has been collected.
We organized a 3D High-Fidelity Mask Face Presentation Attack Detection Challenge to boost the research of 3D mask-based attack detection.
arXiv Detail & Related papers (2021-08-16T08:40:12Z) - Indian Masked Faces in the Wild Dataset [86.79402670904338]
We present a novel textbfIndian Masked Faces in the Wild (IMFW) dataset which contains images with variations in pose, illumination, resolution, and the variety of masks worn by the subjects.
We have also benchmarked the performance of existing face recognition models on the proposed IMFW dataset.
arXiv Detail & Related papers (2021-06-17T17:23:54Z) - Multi-Dataset Benchmarks for Masked Identification using Contrastive
Representation Learning [0.0]
COVID-19 pandemic has drastically changed accepted norms globally.
Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images.
In an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask.
We propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching.
arXiv Detail & Related papers (2021-06-10T08:58:10Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - A Computer Vision System to Help Prevent the Transmission of COVID-19 [79.62140902232628]
The COVID-19 pandemic affects every area of daily life globally.
Health organizations advise social distancing, wearing face mask, and avoiding touching face.
We developed a deep learning-based computer vision system to help prevent the transmission of COVID-19.
arXiv Detail & Related papers (2021-03-16T00:00:04Z) - Face Off: Polarized Public Opinions on Personal Face Mask Usage during
the COVID-19 Pandemic [77.34726150561087]
A series of policy shifts by various governmental bodies have been speculated to have contributed to the polarization of face masks.
We propose a novel approach to accurately gauge public sentiment towards face masks in the United States during COVID-19.
We find two key policy-shift events contributed to statistically significant changes in sentiment for both Republicans and Democrats.
arXiv Detail & Related papers (2020-10-31T18:52:41Z) - Masked Face Recognition for Secure Authentication [2.429066522170765]
Masked faces make it difficult to be detected and recognized, thereby threatening to make the in-house datasets invalid.
We present an open-source tool, MaskTheFace to mask faces effectively creating a large dataset of masked faces.
We report an increase of 38% in the true positive rate for the Facenet system.
arXiv Detail & Related papers (2020-08-25T15:33:59Z) - RetinaFaceMask: A Single Stage Face Mask Detector for Assisting Control
of the COVID-19 Pandemic [1.2691047660244335]
One effective strategy to prevent infection for people is to wear masks in public places.
Certain public service providers require clients to use their services only if they properly wear masks.
There are, however, only a few research studies on automatic face mask detection.
We proposed RetinaFaceMask, the first high-performance single stage face mask detector.
arXiv Detail & Related papers (2020-05-08T10:45:16Z) - Masked Face Recognition Dataset and Application [28.2082082956263]
This work proposes three types of masked face datasets, including Masked Face Detection dataset (MFDD), Real-world Masked Face Recognition dataset (RMFRD) and Simulated Masked Face Recognition dataset (SMFRD)
The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry.
arXiv Detail & Related papers (2020-03-20T04:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.