Masked Face Recognition Dataset and Application
- URL: http://arxiv.org/abs/2003.09093v2
- Date: Mon, 23 Mar 2020 07:58:57 GMT
- Title: Masked Face Recognition Dataset and Application
- Authors: Zhongyuan Wang, Guangcheng Wang, Baojin Huang, Zhangyang Xiong, Qi
Hong, Hao Wu, Peng Yi, Kui Jiang, Nanxi Wang, Yingjiao Pei, Heling Chen, Yu
Miao, Zhibing Huang, Jinbi Liang
- Abstract summary: This work proposes three types of masked face datasets, including Masked Face Detection dataset (MFDD), Real-world Masked Face Recognition dataset (RMFRD) and Simulated Masked Face Recognition dataset (SMFRD)
The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry.
- Score: 28.2082082956263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to effectively prevent the spread of COVID-19 virus, almost everyone
wears a mask during coronavirus epidemic. This almost makes conventional facial
recognition technology ineffective in many cases, such as community access
control, face access control, facial attendance, facial security checks at
train stations, etc. Therefore, it is very urgent to improve the recognition
performance of the existing face recognition technology on the masked faces.
Most current advanced face recognition approaches are designed based on deep
learning, which depend on a large number of face samples. However, at present,
there are no publicly available masked face recognition datasets. To this end,
this work proposes three types of masked face datasets, including Masked Face
Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFRD)
and Simulated Masked Face Recognition Dataset (SMFRD). Among them, to the best
of our knowledge, RMFRD is currently theworld's largest real-world masked face
dataset. These datasets are freely available to industry and academia, based on
which various applications on masked faces can be developed. The
multi-granularity masked face recognition model we developed achieves 95%
accuracy, exceeding the results reported by the industry. Our datasets are
available at: https://github.com/X-zhangyang/Real-World-Masked-Face-Dataset.
Related papers
- An Exploratory Study of Masked Face Recognition with Machine Learning
Algorithms [0.0]
Using face masks have become crucial in our daily life with the recent world-wide COVID-19 pandemic.
The effect of mask-wearing in face recognition is yet an understudied issue.
We use six conventional machine learning algorithms, which are SVC, KNN, LDA, DT, LR and NB, to find out the ones which perform best.
arXiv Detail & Related papers (2023-06-14T14:50:23Z) - FaceMAE: Privacy-Preserving Face Recognition via Masked Autoencoders [81.21440457805932]
We propose a novel framework FaceMAE, where the face privacy and recognition performance are considered simultaneously.
randomly masked face images are used to train the reconstruction module in FaceMAE.
We also perform sufficient privacy-preserving face recognition on several public face datasets.
arXiv Detail & Related papers (2022-05-23T07:19:42Z) - Mask-invariant Face Recognition through Template-level Knowledge
Distillation [3.727773051465455]
Masks affect the performance of previous face recognition systems.
We propose a mask-invariant face recognition solution (MaskInv)
In addition to the distilled knowledge, the student network benefits from additional guidance by margin-based identity classification loss.
arXiv Detail & Related papers (2021-12-10T16:19:28Z) - MLFW: A Database for Face Recognition on Masked Faces [56.441078419992046]
Masked LFW (MLFW) is a tool to generate masked faces from unmasked faces automatically.
The recognition accuracy of SOTA models declines 5%-16% on MLFW database compared with the accuracy on the original images.
arXiv Detail & Related papers (2021-09-13T09:30:10Z) - A realistic approach to generate masked faces applied on two novel
masked face recognition data sets [14.130698536174767]
We propose a method for enhancing data sets containing faces without masks by creating synthetic masks and overlaying them on faces in the original images.
We employ our method to generate a number of 445,446 (90%) samples of masks for the CASIA-WebFace data set and 196,254 (96.8%) masks for the CelebA data set.
We show that our method produces significantly more realistic training examples of masks overlaid on faces by asking volunteers to qualitatively compare it to other methods or data sets.
arXiv Detail & Related papers (2021-09-03T22:33:55Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Multi-Dataset Benchmarks for Masked Identification using Contrastive
Representation Learning [0.0]
COVID-19 pandemic has drastically changed accepted norms globally.
Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images.
In an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask.
We propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching.
arXiv Detail & Related papers (2021-06-10T08:58:10Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - A Computer Vision System to Help Prevent the Transmission of COVID-19 [79.62140902232628]
The COVID-19 pandemic affects every area of daily life globally.
Health organizations advise social distancing, wearing face mask, and avoiding touching face.
We developed a deep learning-based computer vision system to help prevent the transmission of COVID-19.
arXiv Detail & Related papers (2021-03-16T00:00:04Z) - Masked Face Recognition for Secure Authentication [2.429066522170765]
Masked faces make it difficult to be detected and recognized, thereby threatening to make the in-house datasets invalid.
We present an open-source tool, MaskTheFace to mask faces effectively creating a large dataset of masked faces.
We report an increase of 38% in the true positive rate for the Facenet system.
arXiv Detail & Related papers (2020-08-25T15:33:59Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.