論文の概要: Machine Learning for Metasurfaces Design and Their Applications
- arxiv url: http://arxiv.org/abs/2211.01296v1
- Date: Wed, 2 Nov 2022 17:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 14:21:49.520659
- Title: Machine Learning for Metasurfaces Design and Their Applications
- Title(参考訳): メタサーフェス設計のための機械学習とその応用
- Authors: Kumar Vijay Mishra, Ahmet M. Elbir and Amir I. Zaghloul
- Abstract要約: マシン/ディープラーニング(ML/DL)技術は、RIS逆設計の計算コストと時間を削減する上で重要である。
本章は、逆RIS設計とRISアシスト無線システムの両方のためのDL技術のシナプスを提供する。
- 参考スコア(独自算出の注目度): 20.350142630673197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metasurfaces (MTSs) are increasingly emerging as enabling technologies to
meet the demands for multi-functional, small form-factor, efficient,
reconfigurable, tunable, and low-cost radio-frequency (RF) components because
of their ability to manipulate waves in a sub-wavelength thickness through
modified boundary conditions. They enable the design of reconfigurable
intelligent surfaces (RISs) for adaptable wireless channels and smart radio
environments, wherein the inherently stochastic nature of the wireless
environment is transformed into a programmable propagation channel. In
particular, space-limited RF applications, such as communications and radar,
that have strict radiation requirements are currently being investigated for
potential RIS deployment. The RIS comprises sub-wavelength units or meta-atoms,
which are independently controlled and whose geometry and material determine
the spectral response of the RIS. Conventionally, designing RIS to yield the
desired EM response requires trial and error by iteratively investigating a
large possibility of various geometries and materials through thousands of
full-wave EM simulations. In this context, machine/deep learning (ML/DL)
techniques are proving critical in reducing the computational cost and time of
RIS inverse design. Instead of explicitly solving Maxwell's equations, DL
models learn physics-based relationships through supervised training data. The
ML/DL techniques also aid in RIS deployment for numerous wireless applications,
which requires dealing with multiple channel links between the base station
(BS) and the users. As a result, the BS and RIS beamformers require a joint
design, wherein the RIS elements must be rapidly reconfigured. This chapter
provides a synopsis of DL techniques for both inverse RIS design and
RIS-assisted wireless systems.
- Abstract(参考訳): メタサーフェス(mtss)は、多機能、小型のフォームファクター、効率的、再構成可能、波長可変、低コストの高周波(rf)コンポーネントの要求を満たす技術が、境界条件の修正によってサブ波長の厚さで波を操作できる能力によって、ますます登場している。
適応可能な無線チャネルとスマート無線環境のための再構成可能なインテリジェントサーフェス(RIS)の設計を可能にし、無線環境の本質的に確率的な性質をプログラム可能な伝搬チャネルに変換する。
特に、通信やレーダーのような厳密な放射線要件を持つ空間限定のRFアプリケーションは、RIS展開の可能性について現在調査中である。
RISはサブ波長単位またはメタ原子を含み、独立に制御され、その幾何学と物質がRISのスペクトル応答を決定する。
従来、所望のem応答を得るためのrisの設計には、数千のフルウェーブのemシミュレーションを通じて、様々なジオメトリや材料の大きな可能性を反復的に調査することで試行錯誤が必要となる。
この文脈では、マシン/ディープラーニング(ML/DL)技術はRIS逆設計の計算コストと時間を削減する上で重要であることが証明されている。
マクスウェルの方程式を明示的に解く代わりに、DLモデルは教師付きトレーニングデータを通じて物理に基づく関係を学習する。
ML/DL技術は、ベースステーション(BS)とユーザの間の複数のチャネルリンクを扱う必要のある、多数の無線アプリケーションのRISデプロイメントにも役立つ。
その結果、BSとRISビームフォーマは共同設計が必要となり、RIS要素は迅速に再構成される必要がある。
本章は、逆RIS設計とRISアシスト無線システムの両方のためのDL技術のシナプスを提供する。
関連論文リスト
- Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
再構成可能なインテリジェントサーフェス(RIS)は、無線ネットワークのための無線伝搬環境をカスタマイズする革命的な機能を持つ。
無線システムにおけるRISの利点を完全に活用するには、反射素子の位相を従来の通信資源と共同で設計する必要がある。
本稿では、RISが課す制約を扱うための現在の最適化手法と人工知能に基づく手法についてレビューする。
論文 参考訳(メタデータ) (2022-04-28T09:26:14Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
再構成可能なインテリジェントサーフェス(ris)は、次期第6世代(6g)無線通信システムの潜在的な技術と考えられている。
1つまたは複数のRISをデプロイすることで得られる利点は、スペクトルとエネルギー効率の向上、接続性の向上、通信範囲の拡大、トランシーバーの複雑さの低減である。
論文 参考訳(メタデータ) (2021-04-14T20:28:09Z) - Ultra-Reliable Indoor Millimeter Wave Communications using Multiple
Artificial Intelligence-Powered Intelligent Surfaces [115.85072043481414]
複数人工知能(AI)対応再構成可能なインテリジェントサーフェス(RIS)を用いた超信頼性ミリ波(mmW)通信を保証する新しいフレームワークを提案する。
複数のAI駆動RISを使用することで、mmWアクセスポイント(AP)から送信される信号の伝搬方向を変更できます。
mmW APとRISのポリシーを制御するために、2つの集中型および分散コントローラが提案されている。
論文 参考訳(メタデータ) (2021-03-31T19:15:49Z) - Multi-hop RIS-Empowered Terahertz Communications: A DRL-based Hybrid
Beamforming Design [39.21220050099642]
テラヘルツ帯における無線通信 (0.1-10thz) は、将来の第6世代 (6g) 無線通信システムの鍵となる技術の一つとして考えられている。
マルチホップRIS対応通信ネットワークのための新しいハイブリッドビームフォーミング方式を提案し,THz帯域でのカバレッジ範囲を改善する。
論文 参考訳(メタデータ) (2021-01-22T14:56:28Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
RIS(Reconfigurable Intelligent Surfaces)は、電磁波伝搬の動的制御を提供する、高度にスケーラブルな技術である。
RISを内蔵した無線通信における大きな課題の1つは、複数のRISの低オーバーヘッドダイナミックな構成である。
RISの位相構成に対する低複雑さ教師あり学習手法を考案する。
論文 参考訳(メタデータ) (2020-10-09T05:35:27Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
インテリジェント反射面(Intelligent Reflecting Surface、IRS)は、無線ネットワークにおける電波伝搬を工学する技術である。
IRSは無線チャネルを動的に変更して通信性能を向上させることができる。
その大きな可能性にもかかわらず、IRSは無線ネットワークに効率的に統合されるための新たな課題に直面している。
論文 参考訳(メタデータ) (2020-07-06T13:59:09Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
再構成可能なインテリジェントサーフェス(RIS)の配置と受動ビームフォーミング設計のための新しいフレームワークを提案する。
エネルギー効率を最大化するために、共同配置、位相シフト設計、および電力配分の問題を定式化する。
リアルタイムデータセットを活用することで,ユーザの遠隔交通需要を予測するために,LSTM(Long Short-term memory)ベースのエコー状態ネットワーク(ESN)アルゴリズムを提案する。
RISの展開と設計の連立問題を解くために,D3QNに基づく位置取得と位相制御アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-28T14:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。