Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming
- URL: http://arxiv.org/abs/2211.01317v3
- Date: Wed, 3 May 2023 04:22:54 GMT
- Title: Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming
- Authors: Yun-Ning Hung, Chao-Han Huck Yang, Pin-Yu Chen, Alexander Lerch
- Abstract summary: We introduce a novel method for leveraging pre-trained models for low-resource (music) classification based on the concept of Neural Model Reprogramming (NMR)
NMR aims at re-purposing a pre-trained model from a source domain to a target domain by modifying the input of a frozen pre-trained model.
Experimental results suggest that a neural model pre-trained on large-scale datasets can successfully perform music genre classification by using this reprogramming method.
- Score: 129.4950757742912
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning (TL) approaches have shown promising results when handling
tasks with limited training data. However, considerable memory and
computational resources are often required for fine-tuning pre-trained neural
networks with target domain data. In this work, we introduce a novel method for
leveraging pre-trained models for low-resource (music) classification based on
the concept of Neural Model Reprogramming (NMR). NMR aims at re-purposing a
pre-trained model from a source domain to a target domain by modifying the
input of a frozen pre-trained model. In addition to the known,
input-independent, reprogramming method, we propose an advanced reprogramming
paradigm: Input-dependent NMR, to increase adaptability to complex input data
such as musical audio. Experimental results suggest that a neural model
pre-trained on large-scale datasets can successfully perform music genre
classification by using this reprogramming method. The two proposed
Input-dependent NMR TL methods outperform fine-tuning-based TL methods on a
small genre classification dataset.
Related papers
- Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study.
The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets.
arXiv Detail & Related papers (2023-06-14T18:48:04Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
A core challenge in the interpretation of deep neural networks is identifying commonalities between the underlying algorithms implemented by distinct networks trained for the same task.
Motivated by this problem, we introduce DYNAMO, an algorithm that constructs low-dimensional manifold where each point corresponds to a neural network model, and two points are nearby if the corresponding neural networks enact similar high-level computational processes.
DYNAMO takes as input a collection of pre-trained neural networks and outputs a meta-model that emulates the dynamics of the hidden states as well as the outputs of any model in the collection.
arXiv Detail & Related papers (2023-02-27T19:00:05Z) - Adversarial Learning Networks: Source-free Unsupervised Domain
Incremental Learning [0.0]
In a non-stationary environment, updating a DNN model requires parameter re-training or model fine-tuning.
We propose an unsupervised source-free method to update DNN classification models.
Unlike existing methods, our approach can update a DNN model incrementally for non-stationary source and target tasks without storing past training data.
arXiv Detail & Related papers (2023-01-28T02:16:13Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Parameter estimation for WMTI-Watson model of white matter using
encoder-decoder recurrent neural network [0.0]
In this study, we evaluate the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on datasets rat and human brain.
We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS.
arXiv Detail & Related papers (2022-03-01T16:33:15Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training.
It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods.
Experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types.
arXiv Detail & Related papers (2021-03-12T22:18:34Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.