Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh
- URL: http://arxiv.org/abs/2211.01604v1
- Date: Thu, 3 Nov 2022 06:17:52 GMT
- Title: Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh
- Authors: Tian Qin, Alex Beatson, Deniz Oktay, Nick McGreivy, Ryan P. Adams
- Abstract summary: Partial differential equations (PDEs) are often computationally challenging to solve.
We present a meta-learning based method which learns to rapidly solve problems from a distribution of related PDEs.
- Score: 24.572840023107574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Partial differential equations (PDEs) are often computationally challenging
to solve, and in many settings many related PDEs must be be solved either at
every timestep or for a variety of candidate boundary conditions, parameters,
or geometric domains. We present a meta-learning based method which learns to
rapidly solve problems from a distribution of related PDEs. We use
meta-learning (MAML and LEAP) to identify initializations for a neural network
representation of the PDE solution such that a residual of the PDE can be
quickly minimized on a novel task. We apply our meta-solving approach to a
nonlinear Poisson's equation, 1D Burgers' equation, and hyperelasticity
equations with varying parameters, geometries, and boundary conditions. The
resulting Meta-PDE method finds qualitatively accurate solutions to most
problems within a few gradient steps; for the nonlinear Poisson and
hyper-elasticity equation this results in an intermediate accuracy
approximation up to an order of magnitude faster than a baseline finite element
analysis (FEA) solver with equivalent accuracy. In comparison to other learned
solvers and surrogate models, this meta-learning approach can be trained
without supervision from expensive ground-truth data, does not require a mesh,
and can even be used when the geometry and topology varies between tasks.
Related papers
- Learning a Neural Solver for Parametric PDE to Enhance Physics-Informed Methods [14.791541465418263]
We propose learning a solver, i.e., solving partial differential equations (PDEs) using a physics-informed iterative algorithm trained on data.
Our method learns to condition a gradient descent algorithm that automatically adapts to each PDE instance.
We demonstrate the effectiveness of our method through empirical experiments on multiple datasets.
arXiv Detail & Related papers (2024-10-09T12:28:32Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Multilevel CNNs for Parametric PDEs [0.0]
We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
arXiv Detail & Related papers (2023-04-01T21:11:05Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Meta-Auto-Decoder for Solving Parametric Partial Differential Equations [32.46080264991759]
Partial Differential Equations (PDEs) are ubiquitous in many disciplines of science and engineering and notoriously difficult to solve.
Our proposed approach, called Meta-Auto-Decoder (MAD), treats solving parametric PDEs as a meta-learning problem.
MAD exhibits faster convergence speed without losing the accuracy compared with other deep learning methods.
arXiv Detail & Related papers (2021-11-15T02:51:42Z) - A composable autoencoder-based iterative algorithm for accelerating
numerical simulations [0.0]
CoAE-MLSim is an unsupervised, lower-dimensional, local method that is motivated from key ideas used in commercial PDE solvers.
It is tested for a variety of complex engineering cases to demonstrate its computational speed, accuracy, scalability, and generalization across different PDE conditions.
arXiv Detail & Related papers (2021-10-07T20:22:37Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - DiscretizationNet: A Machine-Learning based solver for Navier-Stokes
Equations using Finite Volume Discretization [0.7366405857677226]
The goal of this work is to develop an ML-based PDE solver, that couples important characteristics of existing PDE solvers with Machine Learning technologies.
Our ML-solver, DiscretizationNet, employs a generative CNN-based encoder-decoder model with PDE variables as both input and output features.
A novel iterative capability is implemented during the network training to improve the stability and convergence of the ML-solver.
arXiv Detail & Related papers (2020-05-17T19:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.