Multilevel CNNs for Parametric PDEs
- URL: http://arxiv.org/abs/2304.00388v2
- Date: Tue, 4 Apr 2023 12:42:26 GMT
- Title: Multilevel CNNs for Parametric PDEs
- Authors: Cosmas Hei{\ss}, Ingo G\"uhring and Martin Eigel
- Abstract summary: We combine concepts from multilevel solvers for partial differential equations with neural network based deep learning.
An in-depth theoretical analysis shows that the proposed architecture is able to approximate multigrid V-cycles to arbitrary precision.
We find substantial improvements over state-of-the-art deep learning-based solvers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We combine concepts from multilevel solvers for partial differential
equations (PDEs) with neural network based deep learning and propose a new
methodology for the efficient numerical solution of high-dimensional parametric
PDEs. An in-depth theoretical analysis shows that the proposed architecture is
able to approximate multigrid V-cycles to arbitrary precision with the number
of weights only depending logarithmically on the resolution of the finest mesh.
As a consequence, approximation bounds for the solution of parametric PDEs by
neural networks that are independent on the (stochastic) parameter dimension
can be derived. The performance of the proposed method is illustrated on
high-dimensional parametric linear elliptic PDEs that are common benchmark
problems in uncertainty quantification. We find substantial improvements over
state-of-the-art deep learning-based solvers. As particularly challenging
examples, random conductivity with high-dimensional non-affine Gaussian fields
in 100 parameter dimensions and a random cookie problem are examined. Due to
the multilevel structure of our method, the amount of training samples can be
reduced on finer levels, hence significantly lowering the generation time for
training data and the training time of our method.
Related papers
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - Reduced-order modeling for parameterized PDEs via implicit neural
representations [4.135710717238787]
We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs)
The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters.
We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(103) and 1% relative error to the ground truth values.
arXiv Detail & Related papers (2023-11-28T01:35:06Z) - An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
We present two effective methods for solving high-dimensional partial differential equations (PDE) based on randomized neural networks.
We present ample numerical simulations for a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their performance.
arXiv Detail & Related papers (2023-09-13T15:59:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
Partial differential equations (PDEs) are often computationally challenging to solve.
We present a meta-learning based method which learns to rapidly solve problems from a distribution of related PDEs.
arXiv Detail & Related papers (2022-11-03T06:17:52Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - A Deep Learning approach to Reduced Order Modelling of Parameter
Dependent Partial Differential Equations [0.2148535041822524]
We develop a constructive approach based on Deep Neural Networks for the efficient approximation of the parameter-to-solution map.
In particular, we consider parametrized advection-diffusion PDEs, and we test the methodology in the presence of strong transport fields.
arXiv Detail & Related papers (2021-03-10T17:01:42Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.